首页|行为增强的多层次协同Top-N推荐

行为增强的多层次协同Top-N推荐

扫码查看
传统推荐系统只利用单一用户行为,然而用户行为间是具有关联性,忽视用户行为会丢失辅助行为对目标行为的影响.本文提出了一种行为增强的多层次协同Top-N推荐,在推荐二分图和元路径图上利用注意力机制传播信息,学习多层次高阶和异质协同信号(包括用户-项目间的和项目间的)以提高推荐性能,这样可以更好地利用推荐图结构,并充分考虑到推荐图结构上各种行为间的相互影响.在经典数据集上做了全方位实验验证模型有效性,在电商推荐数据上取得了很好效果.
Multilevel collaborative top-n recommendation based on enhanced behavior
Traditional recommendation systems only use one type of user behavior.However,multiple behaviors of users are related;therefore,ignoring user behaviors will result in the loss of the influence of auxiliary behavior on the target behavior.This paper proposes a multilevel collaborative Top-N recommendation based on enhanced user behavior(MCREB),which uses the attention mechanism to propagate information on the recommendation bipartite and item-based metapath graphs and learns multilevel high-order and heterogeneous collaborative signals,including user-item and inter-item,to improve recommendation performance.Thus,the model can better use the recommen-dation graph structure and fully consider the interaction between various behaviors on the recommendation graph structure.Furthermore,comprehensive experiments are conducted on the benchmark dataset to verify the model's effectiveness.

auxiliary behaviormultibehaviorgraph neural networkmetapath graphuser-itempropagation lay-ertarget behaviorhigh-order heterogenous signal

刘宇鹏、吕衍河

展开 >

哈尔滨理工大学 计算机科学与技术学院,黑龙江 哈尔滨 150001

辅助行为 多行为 图神经网络 元路径图 用户-项目 传播层 目标行为 高阶异质信号

国家自然科学基金中国博士后科学基金黑龙江省教育厅科学技术研究项目

613001152014m56133112521073

2024

哈尔滨工程大学学报
哈尔滨工程大学

哈尔滨工程大学学报

CSTPCD北大核心
影响因子:0.655
ISSN:1006-7043
年,卷(期):2024.45(6)