首页|面向变形飞行器的时变气动参数在线辨识方法

面向变形飞行器的时变气动参数在线辨识方法

扫码查看
针对变形飞行器快时变气动参数的在线高精度获取问题,本文提出一种基于BP神经网络模型的气动参数在线辨识方法.基于变形飞行器气动模型的非线性输入/输出映射关系,建立能够在一定精度范围内逼近变形飞行器气动模型的BP神经网络模型.根据在线实测动力学参数观测数据,采用扩展卡尔曼滤波方法在线训练神经网络,实时校正并获取神经网络模型参数,基于神经网络模型快速计算并预测气动参数,从而跟踪快时变、非线性气动模型的变化.通过对变形飞行器连续变形/构型突变的气动参数辨识进行数学仿真验证.结果表明:提出的方法收敛速度快、在线辨识精度较高,可以实现对变形飞行器气动参数的有效辨识.
Online identification method for morphing vehicles with time-varying aerodynamic parameters
Owing to environmental variations and shape changes during actual flight,the complex aerodynamic char-acteristics of morphing vehicles are time-varying and highly nonlinear.This paper proposes an online identification method based on a BP neural network model to obtain the time-varying aerodynamic parameters of morphing vehi-cles with high precision.First,a BP neural network model was established to approximate the aerodynamic model within a certain precision range based on the nonlinear relationship between input and output.Then,the neural network was trained online using the extended Kalman filter method with observed data from actual aerodynamic pa-rameter tests.The BP neural network model could quickly calculate and predict the aerodynamic parameters after real-time correction and obtaining the neural network parameters.This enabled the tracking of changes in the rapid-ly time-varying and nonlinear aerodynamic model.Finally,a mathematical simulation was conducted to identify the aerodynamic parameters of a morphing air vehicle during successive deformation/structure mutation.The results verified that the proposed method has a fast convergence speed and high accuracy,demonstrating its effectiveness in identifying the aerodynamic parameters of morphing vehicles.

morphing vehiclefast time-varying aerodynamic parametersnonlinear dynamic modelaerodynamic parameter identificationonline identificationintelligent identificationneural networkKalman filter

卢昕玥、张鹏宇、霍文霞、张严雪、王剑颖

展开 >

中山大学 航空航天学院,广东 广州 510275

空间物理重点实验室,北京 100190

变形飞行器 快时变气动参数 非线性气动模型 气动参数辨识 在线辨识 智能辨识 神经网络 卡尔曼滤波

国家自然科学基金项目

62103452

2024

哈尔滨工程大学学报
哈尔滨工程大学

哈尔滨工程大学学报

CSTPCD北大核心
影响因子:0.655
ISSN:1006-7043
年,卷(期):2024.45(8)