首页|基于深度卷积判别网络的人脸比对方法

基于深度卷积判别网络的人脸比对方法

扫码查看
针对实际应用中人脸比对面临着场景复杂性高、光照、遮挡等问题,为了提高人脸比对准确率,本文提出了一种基于深度卷积判别网络的人脸比对算法MTC-FaceNetSDM.建立了MTC-FaceNetSDM的深度卷积神经网络,在FaceNet网络前端中融合多任务级联卷积神经网络得到MTC-FaceNet网络,实现实际场景中的人脸检测提取目标人脸;利用深度卷积神经网络获取高维人脸深度特征,并将FaceNet网络的欧氏距离模块替换为所提出的相似度判别模块SDM,用于高维人脸特征向量比对;最终,利用自制的人脸数据集C-facev1,结合CASIA-WebFace人脸数据集对本文人脸比对算法进行训练,使用人脸数据集LFW和CASIA-FaceV5 对训练后的模型进行性能评估.实验结果表明:本文所设计的MTC-FaceNetSDM的人脸比对准确率比MTC-FaceNet整体提高1.48%,对中国人脸比对准确率提高 3.80%,可实现多人种的人脸比对,同时该算法具备良好的鲁棒性和泛化能力,达到优良的人脸比对效果,可实际应用于人脸验证系统.
Face-matching method using deep convolution discrimination network
Aiming at the problems of high scene complexity,illumination,and occlusion in face matching in practi-cal applications,this paper proposes the face-matching algorithm MTC-FaceNetSDM based on a deep convolution discrimination network to improve the accuracy of face matching.First,the deep convolutional neural network framework in MTC-FaceNetSDM was established,and the MTC-FaceNet network was obtained by embedding a mul-titask cascaded convolutional neural network in the front of the FaceNet network structure.Then,the deep convolu-tional neural network was used to obtain high-dimensional face depth features,and the Euclidean distance module in the FaceNet network structure was replaced with the proposed similarity discrimination module(SDM)for high-dimensional face feature vector matching.Finally,the self-made face datasets C-facev1 and CASIA-WebFace were used to train the face-matching algorithm proposed in this paper,and the face datasets LFW and CASIA-FaceV5 were used to evaluate the performance of the trained model.The experimental results showed that the face-matching accuracy of MTC-FaceNetSDM was 1.48%higher than that of MTC-FaceNet.Moreover,the Chinese face-matching accuracy was increased by 3.80%,thus showing the proposed algorithm's capability for multiethnic face matching.Moreover,the proposed algorithm had favorable robustness and generalization ability,achieving excellent face com-parison results,which could be practically applied to face verification systems.

face matchingdeep convolution discrimination networkmultitask cascaded convolutional neural net-worksimilarity discrimination moduleface feature vector

谷凤伟、陆军、刘子玄、蔡成涛

展开 >

哈尔滨工程大学 智能科学与工程学院,黑龙江 哈尔滨 150001

哈尔滨工程大学 船海装备智能化技术与应用教育部重点实验室,黑龙江 哈尔滨 150001

人脸比对 深度卷积判别网络 多任务级联卷积神经网络 相似度判别模块 人脸特征向量

国家自然科学基金项目黑龙江省自然科学基金项目

52171332F201123

2024

哈尔滨工程大学学报
哈尔滨工程大学

哈尔滨工程大学学报

CSTPCD北大核心
影响因子:0.655
ISSN:1006-7043
年,卷(期):2024.45(9)