首页|一种基于疯狂自适应的哈里斯鹰优化算法

一种基于疯狂自适应的哈里斯鹰优化算法

扫码查看
针对哈里斯鹰优化算法在求解精度和收敛速度的缺陷,本文提出了一种利用疯狂自适应的哈里斯鹰优化算法.引入Tent混沌序列生成初始种群,丰富初始个体的种类特性;将疯狂算子添加到猎物源上,以获得多元丰富的种群;在猎物处获得新的公式代进自适应惯性权重中,增强并平衡研究过程中关于搜索的问题,包括了全局搜索以及局部搜索.使用统计分析、收敛速度分析、经典基准函数评估改进哈里斯鹰优化算法的效率.结果表明:改进算法具有更好的全局搜索能力和求解鲁棒性,同时寻优精度和收敛速度也比原始算法有所增强.在求解高维和多峰测试函数上,改进算法拥有更好的性能,适合推广至实际的优化问题中.
Harris Hawks optimization algorithm based on craziness and adaptiveness
To solve the slow convergence velocity and low-resolution precision in the evolutionary process of the standard Harris Hawks optimization(HHO)algorithm,an improved algorithm,called the crazy and adaptive HHO(CAHHO)algorithm,is proposed in this paper.A tent chaotic sequence is introduced to initiate the individuals'positions,which can strengthen the diversity of initiated individuals.The crazy operator is introduced at the prey source position to increase the diversity of the population.A new formula is obtained from the prey and substituted into the adaptive inertia weight to enhance and balance the search problem in the research process,including the global and local search ability of the algorithm.The efficiency of CAHHO is evaluated using statistical analysis,convergence rate analysis,and classical benchmark functions.The results show that CAHHO has good global search ability and solving robustness.Meanwhile,its optimization accuracy and convergence speed are more power-ful than those of the standard algorithm.Notably,the improved algorithm has better performance in solving high-di-mension and multimodal functions.Meanwhile,the algorithm is suitable for applications to actual optimization prob-lems.

chaotic mapcrazy operatorinertia weightHarris Hawks optimization algorithmfunction optimization

王振宇、王磊、刘茂晨

展开 >

西安理工大学 计算机科学与工程学院,陕西 西安 710048

西安交通大学 计算机科学与技术学院,陕西 西安 710049

混沌映射 疯狂算子 惯性权重 哈里斯鹰优化算法 函数优化

国家自然科学基金项目

62176146

2024

哈尔滨工程大学学报
哈尔滨工程大学

哈尔滨工程大学学报

CSTPCD北大核心
影响因子:0.655
ISSN:1006-7043
年,卷(期):2024.45(9)