哈尔滨工程大学学报2024,Vol.45Issue(9) :1818-1825.DOI:10.11990/jheu.202206072

冗余漂浮空间机器人多任务轨迹规划

Multitask-based trajectory planning of redundant floating space robotics

赵素平 陈超波 阎坤 宋晓华
哈尔滨工程大学学报2024,Vol.45Issue(9) :1818-1825.DOI:10.11990/jheu.202206072

冗余漂浮空间机器人多任务轨迹规划

Multitask-based trajectory planning of redundant floating space robotics

赵素平 1陈超波 1阎坤 1宋晓华1
扫码查看

作者信息

  • 1. 西安工业大学 电子信息工程学院,陕西 西安 710021
  • 折叠

摘要

针对冗余漂浮空间机器人在单次行程中连续执行多项轨道任务的能耗最优轨迹规划问题,本文提出一种改进遗传算法,将同时优化 3 种类型基因引入,使得每条染色体包含 3 部分,即任务序列、与任务序列对应的关节构型序列和描述机器人关节轨迹的正弦多项式系数,对染色体的 3 部分进行独立编码,并在迭代寻优过程中对 3个组成部分独立执行交叉和变异操作.仿真结果表明:与传统遗传算法相比,本文算法具有精度高、计算量少和CPU时间短的优点.

Abstract

For a redundant floating space robot performing multiple tasks in one travel,an improved genetic algo-rithm(IGA)is proposed to solve the corresponding trajectory planning problem.Three gene categories are simulta-neously optimized,and each chromosome consists of three parts.The three parts include a sequential order of task points,a sequential order of joint configurations corresponding to task points,and a sine polynomial coefficient em-ployed to depict joint trajectories.The three parts are separately encoded,and the crossover and mutation opera-tions are separately performed during iterations.Simulation results show that,compared with traditional genetic al-gorithms,IGA has higher efficiency,less calculation,and shorter CPU time.

关键词

空间机器人/自由度冗余/漂浮基座/多任务轨迹规划/关节构型/遗传算法/改进遗传算法/多刚体动力学

Key words

space robotics/redundant degree of freedom/floating base/multitask-based trajectory planning/joint configuration/genetic algorithm/improved genetic algorithm/multi-rigid-body dynamics

引用本文复制引用

基金项目

国家自然科学基金项目(62103315)

陕西省科技厅基金项目(2022GY-236)

陕西省科技厅基金项目(2022GY-306)

出版年

2024
哈尔滨工程大学学报
哈尔滨工程大学

哈尔滨工程大学学报

CSTPCD北大核心
影响因子:0.655
ISSN:1006-7043
段落导航相关论文