首页|基于数据挖掘的公司财务报告RPART-AdaBoost模型研究

基于数据挖掘的公司财务报告RPART-AdaBoost模型研究

扫码查看
为提高会计信息的真实性,维护证券市场的良好秩序,拓展数据挖掘技术在识别财务舞弊特征的模型中的应用.以36家存在财务报告违规的制造业行业的企业作为研究对象,选择同等规模和数量的公司作为对照样本,构建RPART-AdaBoost模型,分析财务指标与非财务指标对对识别财务报告违规行为模型的正确率的提升效果.结果表明,财务指标是违规识别的主要变量,非财务指标均未通过曼·惠特尼U检验.RPART-AdaBoost模型对于全部样本的识别准确率达90.32%.
Research on RPART AdaBoost Model for Corporate Financial Reporting Based on Data Mining
In order to improve the authenticity of accounting information,maintain a good order in the securities market,and expand the application of data mining techniques in identifying the characteristics of financial fraud models,using 36 manufacturing industry enterprises with financial reporting violations as the research object and selecting companies of the same size and quantity as control samples,an RPART AdaBoost model is constructed to analyze the improvement effect of financial and non-financial indicators on the accuracy of identifying financial reporting violations in the model.The results indicate that financial indicators are the main variable for identifying violations,and non-financial indicators have not passed the Man Whitney U-test.The RPART AdaBoost model has a recognition accuracy of 90.32%for all samples.

Financial reportingData miningRPART AdaBoost modelRecognition

张茜

展开 >

安徽工业经济职业技术学院

财务报告 数据挖掘 RPART-AdaBoost模型 识别

2024

哈尔滨师范大学自然科学学报
哈尔滨师范大学

哈尔滨师范大学自然科学学报

影响因子:0.207
ISSN:1000-5617
年,卷(期):2024.40(4)