首页|基于GA-Otsu的数字图像阈值分割的研究与实现

基于GA-Otsu的数字图像阈值分割的研究与实现

扫码查看
为提高图像分割的全局搜索能力与最优化阈值选取的准确性,基于最大类间方差法(Otsu)与遗传算法(GA)提出了一种数字图像阈值分割优化算法GA-Otsu.将遗传算法和Otsu结合起来,利用遗传算法较强的全局搜索能力,通过一系列遗传操作可以快速地靠近图像分割的最优阈值.以Lena、Cameraman、Pep-pers、Airplane、Scene和Tree为对象,比较分析Otsu算法与GA-Otsu算法的图像分割效果、抗噪性与时效性.结果表明,GA-Otsu图像分割方法在保证图像分割质量的同时,能有效缩短对数字图像的分割时间,分割时间小于0.07 s,改善了Otsu算法的分割局限性.
Research and Implementation of Digital Image Threshold Segmentation Based on GA-Otsu
In order to improve the global search capability of image segmentation and the accuracy of optimal threshold selection,a digital image threshold segmentation optimization algorithm GA-Otsu is proposed based on the maximum inter class variance method(Otsu)and genetic algorithm(GA).Combining genetic algorithm and Otsu,utilizing the strong global search ability of genetic algorithm,a series of genetic operations can quickly approach the optimal threshold for image segmentation.Using Lena,Cameraman,Peppers,Airplane,Scene and Tree as objects,the image segmentation performance,noise resistance,and timeliness of Otsu algorithm and GA-Otsu algorithm are compared and analyzed.The results show that the GA-Otsu image segmentation method can effectively shorten the segmentation time for digital images while ensuring image segmentation quality,and improve the segmentation limitations of the Otsu algorithm,split time less than 0.07 seconds.

Genetic algorithmThreshold segmentationMaximum inter class variance algorithmImprovement

马宗禹

展开 >

马鞍山师范高等专科学校

遗传算法 阈值分割 最大类间方差算法 改进

2024

哈尔滨师范大学自然科学学报
哈尔滨师范大学

哈尔滨师范大学自然科学学报

影响因子:0.207
ISSN:1000-5617
年,卷(期):2024.40(4)