首页|基于傅里叶神经算子的遥感数据预测方法

基于傅里叶神经算子的遥感数据预测方法

Prediction method of remote sensing data based on fourier neural operator

扫码查看
地球遥感是气象卫星的主要任务.由于受云层遮挡、宇宙射线辐射等因素影响,气象卫星所获取的遥感数据通常存在大量缺失及异常.傅里叶神经算子具有效率高、精度高、分辨率灵活等特性,基于此,提出一种基于傅里叶神经算子的遥测数据预测算法.该算法首先对遥感数据缺失值利用空间均值法和拉格朗日插值法进行填充,之后用傅里叶神经算子训练出空间数值在时间域上的映射关系,最后利用训练出来的模型对于最新的遥感数据进行预测,基于风云4号遥感卫星真实遥感数据的仿真实验结果表明,所提出的方法在较长期的时序预测中仍能保持较好的预测精度.
Remote sensing of the earth is the main task of meteorological satellites.Due to factors such as cloud cover and cosmic ray radiation,remote sensing data obtained by meteorological satellites often have a large number of missing and ab-normal data.Fourier neural operators have the characteristics of high efficiency,high accuracy,and flexible resolution.This pa-per proposes a remote sensing data prediction algorithm based on Fourier neural operators.The algorithm first fills in the miss-ing values of remote sensing data using the spatial mean method and Lagrange interpolation method,and then trains the map-ping relationship of spatial values in the time domain using Fourier neural operators.Finally,the trained model is used to pre-dict the latest remote sensing data.Simulation experiments based on real remote sensing data of Fengyun-4 remote sensing sat-ellite show that the method proposed in this paper is more effective than others.Good prediction accuracy can still be main-tained in long-term time series forecasting.

earth remote sensingtime series predictionlong-term predictionfourier neural operator

卫兰、朱建璇、徐晓斌、范存群、林曼筠、赵现纲

展开 >

中国气象局中国遥感卫星辐射测量和定标重点开放实验室/国家卫星气象中心(国家空间天气监测预警中心),北京 100081

许健民气象卫星创新中心,北京 100081

北京工业大学 信息学部,北京 100124

地球遥感 时序预测 长期预测 傅里叶神经算子

2025

河南师范大学学报(自然科学版)
河南师范大学

河南师范大学学报(自然科学版)

北大核心
影响因子:0.285
ISSN:1000-2367
年,卷(期):2025.53(1)