首页|Faster R-CNN在储层裂缝识别中的初探

Faster R-CNN在储层裂缝识别中的初探

扫码查看
裂缝的检测和参数提取对储层来讲是重点也是难点。区域卷积神经网络(R-CNN)技术的发展给裂缝的计算机自动识别带来了新思路。R-CNN将分类问题转换为回归问题;Fast R-CNN将边框回归纳入训练过程,减少了边框回归所需要的时间;Faster R-CNN改变了输出建议区域的方法,大幅减少了输出建议区域消耗的时间。文章将Faster R-CNN在测井成像识别裂缝的初步应用效果优秀,检测得到裂缝区域及参数过程耗时0。041s,经验证Faster R-CNN是一种有效的可以识别裂缝并提取裂缝参数的方法。
Application of Faster R-CNN in Reservoir Fractures Identification
Fracture detection and parameter extraction is the key and difficult point for reservoir.The development of the regional convolution neural network(R-CNN)provides a new idea for computer automatic identification of fractures.The R-CNN converts classification problems into regression problems.The Fast R-CNN incorporates the per-class bounding-box regression into the training process,which could shorten the time spent in the per-class bounding-box regression.By changing the way to output the bounding-box,the Faster R-CNN could greatly shorten the time spent in the output bounding-box.In this paper,the preliminary application of Faster R-CNN in logging imaging identification of fractures presents excellent results.The time for detection of fracture area and parameters is 0.041s.It is verified that Faster R-CNN is an effective method to identify fractures and extract fracture parameters.

reservoir fracturessautomatic identificationFaster R-CNN

魏伯阳、杨占军、王立党、赵阳、李昂

展开 >

河南省地质研究院,河南 郑州 450000

储层裂缝 自动识别 Faster R-CNN

2024

河南水利与南水北调
河南省水利厅

河南水利与南水北调

影响因子:0.382
ISSN:1673-8853
年,卷(期):2024.53(11)