首页|DBD等离子体协同MnFe2O4降解氢氯噻嗪性能研究

DBD等离子体协同MnFe2O4降解氢氯噻嗪性能研究

扫码查看
文章研究介质阻挡放电(dielectric barrier discharge,DBD)等离子体协同M nFe2 O4 对常用药物氢氯噻嗪(hydrochlorothiazide,HCTZ)在水中的降解性能.通过溶剂热法制备磁性锰铁氧体 M nFe2 O4 作为非均相芬顿催化剂,采用X射线衍射(X-ray diffraction,XRD)、X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)和扫描电子显微镜(scanning electron microscope,SEM)分析手段对其结构进行表征.利用 HCTZ模拟目标废水,分别研究不同的 HCTZ初始质量浓度、溶液初始pH值、电源输入功率和M nFe2 O4 投放剂量等因素对体系降解性能的影响,结果显示随着药物初始质量浓度的提高会使降解效率持续下降,不断提升放电功率将更利于 HCTZ的降解,且碱性环境会对处理过程产生抑制效应.同时研究发现,DBD/MnFe2 O4 体系下的最佳M nFe2 O4 投放剂量是50 mg,并且经5次循环使用后,体系仍能在25 min内将99%的HCTZ去除,表现出良好的重复使用性能.
Degradation of hydrochlorothiazide by dielectric barrier discharge plasma combined with MnFe2O4
The degradation of the commonly used drug hydrochlorothiazide(HCTZ)in water was studied using dielectric barrier discharge(DBD)in collaboration with MnFe2O4.Magnetic manganese ferrite MnFe2O4 was prepared by solvothermal method as heterogeneous Fenton catalyst,and its structure was characterized using X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS)and scanning electron microscope(SEM).The target wastewater was simulated using HCTZ,and the effects of different initial mass concentration of HCTZ,initial pH value of solution,input power of power supply and dosage of MnFe2O4 on the degradation performance of the system were respectively studied.The results show that the degradation efficiency will continue to decline with the increase of initial concentration of the drug,and the continuous increase of dis-charge power will be more conducive to the degradation of HCTZ.And the alkaline environment will have an inhibiting effect on the treatment process.It is also found that the optimal MnFe2O4 dosage under DBD/Mn-Fe2 O4 system is 50 mg,and after five cycles of use,the system can still remove 99%of HCTZ within 25 min,showing good reuse performance.

dielectric barrier discharge(DBD)MnFe2O4hydrochlorothiazide(HCTZ)Fenton reac-tionadvanced oxidation process

叶晓冬、胡淑恒、许子牧、兰彦、程诚

展开 >

合肥工业大学 资源与环境工程学院,安徽 合肥 230009

中国科学院合肥物质科学研究院 等离子体物理研究所,安徽 合肥 230031

介质阻挡放电(DBD) MnFe2O4 氢氯噻嗪(HCTZ) 芬顿反应 高级氧化工艺

国家自然科学基金资助项目国家自然科学基金资助项目国家自然科学基金资助项目安徽省医学物理与技术重点实验室基金资助项目合肥工业大学博士点专项研究基金资助项目

517772065180704651877208LMPT2017Y7BP0U1581JZ2017HGBZ0944

2024

合肥工业大学学报(自然科学版)
合肥工业大学

合肥工业大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.608
ISSN:1003-5060
年,卷(期):2024.47(4)
  • 23