首页|基于深度学习的细骨料图像实时分割提取

基于深度学习的细骨料图像实时分割提取

扫码查看
文章基于深度学习算法对细骨料投影图像进行分割,通过对比传统阈值分割与PSPNet、DeepLab V3+、U-Net深度学习网络模型算法的分割结果对4种模型进行评价分析,同时实验对比细骨料2种等效粒径计算方法(单面投影法、双面投影法)的粒径和级配分布结果.结果表明:深度学习模型算法中U-Net网络模型的准确率、召回率、F平衡分数和交并比分别达到99.8%、88.1%、84.9%、84.3%,均优于对比组模型;对于3种不同粒径的单粒段细骨料,采用双面投影法计算出的细骨料等效粒径Dd与实际细骨料粒径的偏差分别为1.40%、2.10%、3.12%;对于混合粒段骨料,采用等效粒径Dd计算出的级配分布曲线更接近筛分法的实验结果,具有普遍适用性.研究结果可为细骨料径粒径和粒型参数的计算提取提供新的思路.
Online segmentation and extraction of fine aggregate image based on deep learning technology
In this paper,the deep learning algorithm is used to segment the fine aggregate projection image,and the evaluation and analysis on the traditional threshold segmentation and three deep learn-ing network model algorithms(PSPNet,DeepLab V3+and U-Net)are conducted by comparing their segmentation results.At the same time,the results of grain size and gradation distribution of fine ag-gregate measured by two equivalent grain size calculation methods(single-sided projection method and double-sided projection method)were compared experimentally.The results show that the accuracy rate,recall rate,F-balance score and intersection ratio of U-Net network model in the deep learning model algorithm are 99.8%,88.1%,84.9%and 84.3%,respectively,which are superior to those of the control group model.For the single-grain segment fine aggregate with three different grain sizes,the deviation between the equivalent grain size Dd of fine aggregate calculated by double-sided projec-tion method and the actual fine aggregate size is 1.40%,2.10%and 3.12%,respectively.For the ag-gregate of mixed grain segment,the gradation distribution curve calculated by Dd is closer to the ex-perimental results of screening method,which has universal applicability.The results provide a new i-dea for the study of grain size and grain type parameters of fine aggregate.

fine aggregatethreshold segmentationdeep learning algorithmequivalent grain sizefine aggregate grain type parameters

宇周亮、洪丽、詹炳根、余其俊

展开 >

合肥工业大学土木与水利工程学院,安徽合肥 230009

土木工程结构与材料安徽省重点实验室,安徽合肥 230009

细骨料 阈值分割 深度学习算法 等效粒径 细骨料粒型参数

国家重点研发计划

2020YFC1909901

2024

合肥工业大学学报(自然科学版)
合肥工业大学

合肥工业大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.608
ISSN:1003-5060
年,卷(期):2024.47(5)