首页|基于深度学习的细骨料图像实时分割提取

基于深度学习的细骨料图像实时分割提取

Online segmentation and extraction of fine aggregate image based on deep learning technology

扫码查看
文章基于深度学习算法对细骨料投影图像进行分割,通过对比传统阈值分割与PSPNet、DeepLab V3+、U-Net深度学习网络模型算法的分割结果对4种模型进行评价分析,同时实验对比细骨料2种等效粒径计算方法(单面投影法、双面投影法)的粒径和级配分布结果.结果表明:深度学习模型算法中U-Net网络模型的准确率、召回率、F平衡分数和交并比分别达到99.8%、88.1%、84.9%、84.3%,均优于对比组模型;对于3种不同粒径的单粒段细骨料,采用双面投影法计算出的细骨料等效粒径Dd与实际细骨料粒径的偏差分别为1.40%、2.10%、3.12%;对于混合粒段骨料,采用等效粒径Dd计算出的级配分布曲线更接近筛分法的实验结果,具有普遍适用性.研究结果可为细骨料径粒径和粒型参数的计算提取提供新的思路.
In this paper,the deep learning algorithm is used to segment the fine aggregate projection image,and the evaluation and analysis on the traditional threshold segmentation and three deep learn-ing network model algorithms(PSPNet,DeepLab V3+and U-Net)are conducted by comparing their segmentation results.At the same time,the results of grain size and gradation distribution of fine ag-gregate measured by two equivalent grain size calculation methods(single-sided projection method and double-sided projection method)were compared experimentally.The results show that the accuracy rate,recall rate,F-balance score and intersection ratio of U-Net network model in the deep learning model algorithm are 99.8%,88.1%,84.9%and 84.3%,respectively,which are superior to those of the control group model.For the single-grain segment fine aggregate with three different grain sizes,the deviation between the equivalent grain size Dd of fine aggregate calculated by double-sided projec-tion method and the actual fine aggregate size is 1.40%,2.10%and 3.12%,respectively.For the ag-gregate of mixed grain segment,the gradation distribution curve calculated by Dd is closer to the ex-perimental results of screening method,which has universal applicability.The results provide a new i-dea for the study of grain size and grain type parameters of fine aggregate.

fine aggregatethreshold segmentationdeep learning algorithmequivalent grain sizefine aggregate grain type parameters

宇周亮、洪丽、詹炳根、余其俊

展开 >

合肥工业大学土木与水利工程学院,安徽合肥 230009

土木工程结构与材料安徽省重点实验室,安徽合肥 230009

细骨料 阈值分割 深度学习算法 等效粒径 细骨料粒型参数

国家重点研发计划

2020YFC1909901

2024

合肥工业大学学报(自然科学版)
合肥工业大学

合肥工业大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.608
ISSN:1003-5060
年,卷(期):2024.47(5)