首页|一种基于DBSCAN算法改进的稳健AdaBoost回归模型

一种基于DBSCAN算法改进的稳健AdaBoost回归模型

扫码查看
传统的AdaBoost.R2算法在AdaBoost算法思想的基础上将回归问题转化为二分类问题,取得了较好的估计效果.但该算法对异常点敏感,在迭代过程中会将异常点的权重不断加大,导致模型的稳健性较差.提出一种改进的AdaBoost算法,称为AdaBoost.DBSCAN.首先,通过DBSCAN聚类算法对观测点进行分类;然后,分别针对正常点和异常点,采用不同的权重控制策略进行控制,保证异常点的权重在迭代过程中无法以指数速率增长,同时能较大程度地保存样本信息.模拟和实际应用结果表示,与传统的AdaBoost.R2、AdaBoost.RT算法以及AdaBoost.RS算法相比,该算法具有良好的稳健性,在含有不同比例异常点的数据集中都能够获得较好的表现.
An Improved Robust AdaBoost Regression Model Based on DBSCAN Algorithm
The traditional AdaBoost.R2 algorithm transforms the regression to a binary classification via AdaBoost algorithm and performs well.However,this algorithm continuously enlarges the weights of outliers during the iterations,then it is sensitive to outliers and lacks of robustness.This paper gives an improved AdaBoost regression model based on DBSCAN clustering algorithm,named as AdaBoost.DBSCAN,which identifies outliers in observations through DBSCAN,and different weight control strategies are adopted to ensure that the weight of outliers cannot increase exponentially in the itera-tive process,and sample information can be preserved to a large extent.Simulations and applications show that this new method outperforms AdaBoost.R2,AdaBoost.RT and AdaBoost.RS algorithms un-der different proportions of outliers.

AdaBoost.R2DBSCAN clustering algorithmoutliersrobustnessregression

黄静、杨联强

展开 >

安徽大学大数据与统计学院,合肥 230601

安徽大学人工智能学院,合肥 230601

AdaBoost.R2 DBSCAN聚类算法 异常点 稳健性 回归

国家社会科学基金项目安徽省自然科学基金安徽省高校自然科学基金

22BTJ0592208085MA06KJ2021A0049

2024

合肥学院学报(综合版)
合肥学院

合肥学院学报(综合版)

影响因子:0.426
ISSN:2096-2371
年,卷(期):2024.41(2)
  • 20