首页|河渠附近潜水一维非稳定流模型Fourier快解求解

河渠附近潜水一维非稳定流模型Fourier快解求解

扫码查看
对垂向交换量影响下的河渠附近潜水一维非稳定流模型,采用Boussinesq方程的第一线性化方法,在利用Fourier变换求解时,随河渠水位f(t)的变化,需要复杂繁琐的积分变换过程.在f(t)不直接参与变换的前提下,将f(t)用运算符代替并运行于变换过程中,依据Fourier变换的微分性质和卷积定理等性质,建立这类模型普遍适用的含f(t)的理论通用解;依据理论通用解,给出f(t)为几个常用函数时的模型解析解;利用理论通用解的求解方法,可避免大部分繁杂的积分变换运算过程.针对不同的河渠水位变动与垂向补给组合条件,建立利用潜水位动态监测数据计算模型参数的拐点法和配线法;实例演示,模型参数的求算过程.
Fourier Transform Shortcut Solution to 1D Transient Phreat-ic Flow Model Near River and Canal
During the process of solving a one-dimensional model for simulating transient phreatic flow near canals using the Fourier transform,the integration transformation can become complex and cum-bersome,especially when handling boundary functions f(t)that vary with time.This study established a general theoretical solution applicable to this type of model,considering vertical water exchange,us-ing an in-house methodological principle of establishing fundamental solutions based on Fourier trans-form properties.Without directly calculating the transformation of f(t),analytic solution for the actual model is obtained when lead f(t)into the fundamental solution.Several common types of functions are solved using the fundamental solution.By using the solution method of fundamental solutions,most complex integration transformation operations can be avoided.Based on the observation data of groundwater table,the turning-point method and the curve-fitting method for finding aquifer parame-ter are established adapt for different combination conditions of river water level variation and vertical recharge.Examples demonstrate the calculation process of model parameters.

canal boundaryvertical water exchangetransient phreatic flowFourier transformfunda-mental solution

吴丹、孙倩

展开 >

合肥大学 城市建设与交通学院,合肥 230601

河渠边界 垂向水量交换 潜水非稳定流 Fourier变换 理论通用解

合肥学院人才科研基金项目

23RC18

2024

合肥学院学报(综合版)
合肥学院

合肥学院学报(综合版)

影响因子:0.426
ISSN:2096-2371
年,卷(期):2024.41(2)
  • 31