首页|基于Manhattan距离的正态云模型相似性度量方法研究

基于Manhattan距离的正态云模型相似性度量方法研究

扫码查看
综合考虑正态云的期望曲线与含熵期望曲线,提出了一种基于Manhattan距离的正态云相似性度量方法.首先,将不确定性语言信息转化为定量数值,分别计算群体云评价与最优云、最劣云之间的相似度,采用加权平均集成给出综合相似度,从而得到各方案的排序.最后,通过实例说明该方法的有效性.
Manhattan Distance Based Measurement of Similarity for Normal Cloud Model
This article considers the expectation curve and expectation curve with the entropy of normal clouds,and proposes a similarity measurement method for normal clouds based on Manhattan dis-tance.Firstly,the uncertain linguistic information is transformed into quantitative numerical values.Then,the similarity between the group cloud evaluation and the best and worst clouds is calculated separately.The weighted average ensemble is used to obtain the comprehensive similarity,thereby ob-taining the ranking of each scheme.Finally,the effectiveness this method are demonstrated through ac-tual examples.

normal cloudexpectation curveManhattan distancesimilarity

詹媛媛、周金明、陶胜男、李龙莲

展开 >

安徽工程大学数理与金融学院,安徽 芜湖 241000

正态云 期望曲线 Manhattan距离 相似度

2024

合肥学院学报(综合版)
合肥学院

合肥学院学报(综合版)

影响因子:0.426
ISSN:2096-2371
年,卷(期):2024.41(5)