首页|基于ResNet50-FPG模型在管道焊缝缺陷识别中的应用

基于ResNet50-FPG模型在管道焊缝缺陷识别中的应用

扫码查看
为了解决管道焊缝缺陷检测问题,提出了基于超声数据处理和残差神经网络(ResNet)优化的综合方案.介绍了超声数据采集和转换为图像的方法,详细阐述了ResNet网络模型的剪枝优化过程,以提高模型的推理速度.通过消融试验,验证各种改进方法对模型性能的影响.结果表明,ResNet50-small-FPGM FilterPruner模型在综合准确率、F1值和推理速度方面表现最优,适合实时管道缺陷检测.此研究为提高管道焊缝缺陷检测的效率和准确性提供了一种有效途径,具有重要的实际应用价值.
Application of ResNet50-FPG Model in Identification of Weld Defects in Pipelines
In order to solve the problem of pipeline weld defect detection,a comprehensive scheme based on ultrasonic data processing and residual neural network(ResNet)optimization was proposed.The method of ultrasonic data acquisition and image conversion is introduced.The pruning optimization process of ResNet network model is described in detail to improve the inference speed of the model.The effect of various improved methods on the performance of the model was verified by the ablation test.The results show that the ResNet50-small-FPGM FilterPruner model has the best performance in terms of comprehensive accuracy,F1 value and inference speed,and is suitable for real-time pipeline defect detection.An effective way is provided to improve the efficiency and accuracy of pipeline weld defect detection,which has important practical application value.

pipe welddefect identificationresidual neural networkablation experiment

卫小龙、余泽禹

展开 >

荆州职业技术学院 智能制造学院,湖北 荆州 434020

荆州职业技术学院 信息与通信工程学院,湖北 荆州 434020

管道焊缝 缺陷识别 残差神经网络 消融试验

2025

焊管
宝鸡石油钢管有限责任公司

焊管

影响因子:0.358
ISSN:1001-3938
年,卷(期):2025.48(1)