首页|RhCu催化剂中限域环境调控合成气转化生成CHx反应性能

RhCu催化剂中限域环境调控合成气转化生成CHx反应性能

扫码查看
合成气制C2含氧化合物的选择性目前仍面临巨大挑战.本研究基于密度泛函理论计算方法,探究了4种RhCu限域催化剂中Rh活性位限域环境对合成气转化生成CHx反应性能的影响,揭示了RhCu限域催化剂中限域效应调控催化性能的本质.结果表明,RhCu限域催化剂中Rh活性位限域环境能够调控合成气转化生成CHx的活性和选择性.筛选获得RhGCN5.5催化剂具有最高的生成CHx(x=1~3)单体活性,归因于适中的限域效应使得表层原子d带中心远离费米能级,导致CH2OH解离过渡态与RhCu表面之间呈现适当的电子转移,利于CH2OH解离,从而呈现良好的CHx生成活性.本研究为通过调变单原子限域环境实现调控合成气转化生成C2含氧化合物反应的催化性能提供了理论依据,并为单原子限域金属催化剂设计提供了结构线索.
Confined environment of RhCu catalyst to regulate the reaction performance for synthesis gas conversion to CHx
The selectivity of syngas-to-C2 oxygenates still faces a big challenge.Using density functional theory calculation methods,this study explores the influence of the confined environment of Rh active sites on the reaction performance of syngas conversion to CHx over four types of RhCu confined catalysts,which further reveals the essential reasons of the confinement effect to regulate the catalytic performance.The results showed that the confined environment of Rh active sites in the RhCu confined catalysts can regulate the activity and selectivity of syngas conversion to generate CHx.The screened RhGCN5.5 catalyst could perform the highest catalytic activity toward syngas conversion to generate CHx(x=1-3)monomer.The moderate confinement effect of RhGCN5.5 catalyst made the d-band center of surface atoms far away from the Fermi level,leading to an appropriate electron gain and loss between the transition state of CH2OH dissociation and RhCu surface,which was conducive to the dissociation of CH2OH into CH2 and thus exhibited excellent CHx formation activity.This study provides theoretical basis for improving the catalytic performance of syngas conversion to C2 oxygenates by adjusting the confined environment of active site and provides the structural clues for the design of the confined metal single-atom catalysts.

confined catalystconfined environmentsyngasCHxdensity functional theory

李娜、赵婉彤、凌丽霞、王宝俊、章日光

展开 >

太原理工大学省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024

限域催化剂 限域环境 合成气 碳氢化合物 密度泛函理论

国家重点研发计划山西省杰出青年科学基金

2021YFA1502804202103021221005

2024

化工进展
中国化工学会,化学工业出版社

化工进展

CSTPCD北大核心
影响因子:1.062
ISSN:1000-6613
年,卷(期):2024.43(5)
  • 38