首页|基于物理信息神经网络的甲烷无氧芳构化反应的正反问题

基于物理信息神经网络的甲烷无氧芳构化反应的正反问题

扫码查看
解决化学反应动力学建模的正问题和反问题研究有助于更深地理解反应机理,降低实验成本。本研究以一维填充床甲烷无氧芳构化(MDA)反应为案例,利用物理信息神经网络(PINN)将化学反应机理方程耦合到损失函数中,以此构建动力学建模和参数反演的求解框架。首先,通过正问题求解确定最佳神经网络超参数方案,结果表明构建的正问题模型在求解MDA反应动力学方程上有良好的预测性能,训练和外推的L2误差分别为0。19%和0。95%。在此基础上,在0、0。1%、0。3%高斯噪声下,利用标签数据反演反应速率常数,训练得到的预测值与真实值相对误差均在0。5%内,体现出了反问题模型在低质量数据下进行未知动力学参数反演的能力。
Forward and reverse problems of methane dehydro-aromatization based on physics-informed neural network
Research on solving the forward and reverse problems of chemical reaction kinetics modeling can help to gain a deeper understanding of reaction mechanisms and reduce experimental costs.This study took the one-dimensional packed bed methane dehydro-aromatization(MDA)as an example and used a physics-informed neural network to couple the chemical reaction mechanism equations into the loss function.In this way,a solution framework for reaction kinetics modeling and parameter inversion was constructed.Firstly,the optimal neural network hyperparameters were determined by solving the forward problem.The results showed that the constructed model had good predictive performance in solving the MDA reaction kinetics model,with training error and extrapolation error L2 of 0.19%and 0.95%,respectively.Based on this,the rate constants of MDA were inverted using labeled data under 0,0.1%,and 0.3%Gaussian noise,and the predicted values obtained from training had a relative error within 0.5%of the true values,demonstrating the ability of physics-informed learning to perform inversion for unknown kinetic parameters under low-quality data.

methane dehydro-aromatizationphysics-informed neural networkreaction kinetic modelinverse problem

李依梦、陈运全、何畅、张冰剑、陈清林

展开 >

中山大学材料科学与工程学院,广东 广州 510006

中山大学化学工程与技术学院,广东 珠海 519082

广东省石化过程节能工程技术研究中心,广东广州 510006

甲烷无氧芳构化 物理信息神经网络 反应动力学模型 反问题

广东省自然科学基金国家自然科学基金

2022A151501047922078373

2024

化工进展
中国化工学会,化学工业出版社

化工进展

CSTPCD北大核心
影响因子:1.062
ISSN:1000-6613
年,卷(期):2024.43(9)