首页|多孔炭修饰的吸附催化一体化电极高效电解碳酸氢盐

多孔炭修饰的吸附催化一体化电极高效电解碳酸氢盐

扫码查看
电解碳酸氢盐体系可避免CO2解吸过程中的能量密集型步骤,更具经济性及技术可行性.但目前阴极存在原位产生CO2 快速逃逸现象,CO2 不能充分参与反应并导致CO2 利用率低等问题,本文将活性炭(activated carbon,AC)作为吸附层修饰电极,与CO2催化材料Ag均匀混合以构建吸附催化一体化电极,有效调控气体扩散电极孔隙结构,同时探究了不同炭材料的CO2吸附特性对电解碳酸氢盐性能的影响.在Ag∶AC=4∶1、Ag纳米颗粒载量为2mg/cm2、全氟磺酸-聚四氟乙烯共聚物(Nafion)质量分数为3.04%时,AC修饰Ag电极具有最高的CO法拉第效率,在100mA/cm2和200mA/cm2电流密度时分别达到59.02%和53.79%.稳定性测试表明该电极能够保持11h的高效运行,CO2利用率达68.61%.证明了AC修饰的催化吸附一体化电极在电解碳酸氢盐体系中可有效吸附CO2,提高电化学性能.
Catalytic adsorption integrated electrode modified by porous carbon for efficient electrolysis of bicarbonate
Electrolytic bicarbonate conversion that can avoid the energy-intensive steps(CO2 desorption)has attracted particular interest.However,the rapid escape of CO2 generated in the electrode leads to the insufficient participation of CO2 in the reaction and the low utilization rate of CO2.In this study,active carbon(AC)was used as an adsorption layer to modify the electrode.AC was mixed with CO2 catalytic material Ag to construct an catalytic adsorption integrated electrode(AC+Ag),Which effectively regulated the pore structure of the gas diffusion electrode.And it explored the influence of CO2 adsorption characteristics of different carbon materials on the performance during the electrolytic bicarbonate conversion.When Ag∶AC was 4∶1,Ag NPs loading was 2mg/cm2 and Nafion content was 3.04%,the AC+Ag electrode obtained the highest Faraday efficiency of CO.The FECO reached 59.02%and 53.79%at 100mA/cm2 and 200mA/cm2,respectively.The stability test showed that the electrode can stable convert bicarbonate to CO for 11h.Besides,a high CO2 utilization rate of 68.61%was obtained.This study proved that the AC-modified catalytic adsorption integrated electrode can effectively adsorb CO2 in the electrolytic bicarbonate conversion and improve the electrochemical performance.

electrochemical reduction of CO2in situ reduction of CO2electrolytic bicarbonateelectrode structureintegrated electrode

王正峰、谢雨杭、李伟科、范永春、康钟尹、付乾

展开 >

中国能源建设集团广东省电力设计研究院有限公司,广东广州 510633

重庆大学能源与动力工程学院,重庆 400030

重庆大学工程热物理研究所,重庆 400030

电化学还原CO2 原位还原CO2 电解碳酸氢盐 电极结构 一体化电极

重庆市杰出青年科学基金

cstc2019jcyjjqX0020

2024

化工进展
中国化工学会,化学工业出版社

化工进展

CSTPCD北大核心
影响因子:1.062
ISSN:1000-6613
年,卷(期):2024.43(9)