首页|氮掺杂石墨烯/黑磷量子点纳米复合材料的低温光催化法制备及其储锂性能

氮掺杂石墨烯/黑磷量子点纳米复合材料的低温光催化法制备及其储锂性能

扫码查看
纳米黑磷/石墨烯复合材料在锂离子电池领域具有很好的应用前景,但以纳米黑磷为原料制备纳米黑磷/石墨烯复合材料的过程中往往伴随纳米黑磷的氧化,一定程度上影响了制得的纳米黑磷/石墨烯复合材料性能。本研究以纳米黑磷为磷源,价廉易得的氧化石墨烯为碳源,在氨气气氛下,采用低温光催化法制得了氮掺杂石墨烯/黑磷量子点(N-rGO/BPQDs)复合材料,FTIR、Raman、XPS、SEM等表征结果表明采用上述方法制备的纳米黑磷基材料中纳米黑磷的氧化程度低。恒流充放电测试结果表明N-rGO/BPQDs复合材料在0。1A/g电流密度下的初始可逆比容量为620mA·h/g,循环100次后仍保持450mA·h/g的可逆比容量,高于石墨负极材料的理论比容量(372mA·h/g)。
Preparation of N-doped reduced graphene oxide/black phosphorus quantum dot composite by low temperature photocatalysis and its performance as anode materials for lithium-ion batteries
Nano black phosphorus/graphene composites have a good application prospect in the field of lithium-ion batteries,but the process of preparing nano black phosphorus/graphene composites is often accompanied by the oxidation of nano black phosphorus,which affects the performance of the prepared nano black phosphorus/graphene composites to a certain extent.In this study,nitrogen-doped graphene/black phosphorus quantum dots(N-rGO/BPQDs)composites were prepared by low temperature photocatalysis under ammonia atmosphere using nano black phosphorus as phosphorus source,and cheap and readily available graphene oxide as carbon source.FTIR,Raman,XPS and SEM characterization results showed that the oxidation degree of nano-black phosphorus based materials prepared by the above method was low.The results of constant current charge-discharge test indicated that the initial reversible specific capacity of N-rGO/BPQDs composites at 0.1 A/g current density was 620mA·h/g.After 100 cycles,the reversible specific capacity of 450mA·h/g was still maintained,which was higher than the theoretical specific capacity of graphite anode materials(372mA·h/g).

black phosphorus quantum dotsgraphene oxidelow temperature photocatalysisN-rGO/BPQDs compositeslithium ion batteries

李开鹏、卢晓敏、付姣、裴丰、陈鑫智、廉培超

展开 >

昆明理工大学化学工程学院,云南 昆明 650500

昆明黑磷科技服务有限责任公司,云南 昆明 650500

云南省磷化工节能与新材料重点实验室,云南 昆明 650500

湖北宜化化工科技研发有限公司,湖北宜昌 443311

展开 >

黑磷量子点 氧化石墨烯 低温光催化 N-rGO/BPQDs复合材料 锂离子电池

2024

化工进展
中国化工学会,化学工业出版社

化工进展

CSTPCD北大核心
影响因子:1.062
ISSN:1000-6613
年,卷(期):2024.43(11)