首页|机器学习在喷射器研究中的应用进展

机器学习在喷射器研究中的应用进展

扫码查看
喷射器是一种用途广泛的机械装置,具有结构简单、初投资低、维护容易、运行可靠等优点,广泛应用于制冷、海水淡化、化工、燃料电池、航空航天等领域。喷射器不直接消耗机械能,可实现节能的目的,在我国"双碳"背景下备受关注。机器学习方法作为一种基于数据的自动化分析方法,可以用于喷射器内部流动特性的分析及喷射器性能的优化。近年来,已有部分学者将机器学习方法应用于喷射器的研究中,以提升喷射器性能和系统性能。但是目前文献中的研究方向较为分散,研究现状和研究水平尚不明晰。本文对采用机器学习方法对喷射器进行研究的文献进行了全面的梳理,分析现状、总结方法,并指出未来可以将机器学习方法应用于喷射器内部流动特征的研究中,为提升喷射器效率和性能提供依据和指导;将机器学习方法应用于喷射器变工况性能研究中,构建喷射器从自动化设计到真实应用的通路;构建更加合适的算法,提出一系列具有针对性的解决方案。
Process in the application of machine learning in ejector research
The ejector is a widely used mechanical device with advantages such as simple structure,low initial cost,easy maintenance,and reliable operation.It is widely applied in fields such as refrigeration,desalination,chemical engineering,fuel cells,aerospace,etc.The ejector does not directly consume mechanical energy,which allows for energy-saving purposes,making it more important and attractive with the national goals of"carbon peaking and carbon neutrality"in China.Machine learning methods,as a data-driven automated analysis approach,can be used for analyzing the internal flow characteristics of ejectors and optimizing ejector performance.In recent years,a small number of scholars have already applied machine learning methods to the study of ejectors in various applications,aiming at improving the ejector performance and the system performance.But the research in the open literature is currently scattered,and the state of the art is not yet clear.The present work comprehensively reviewed the literature on the application of machine learning methods in the study of ejectors for different applications,analyzed the current research status,summarized the machine learning methods utilized in the open literature,and pointed out that in the future machine learning methods can be applied to the study of internal flow characteristics of ejectors,providing a basis and guidance for improving the efficiency and performance of ejectors.Machine learning methods can be applied to the study of ejector performance under variable operating conditions,constructing a pathway from automated design to real-world application of ejectors.Constructing more suitable algorithms and proposing a series of targeted solutions.

ejector refrigerationejectormachine learningartificial neural networkpredictionoptimization

戴征舒、左元浩、陈孝罗、张犁、赵根、张学军、张华

展开 >

上海理工大学能源与动力工程学院,上海 200093

浙江大学制冷与低温研究所,浙江 杭州 310027

浙江大学先进技术研究院,浙江 杭州 310027

喷射制冷 喷射器 机器学习 人工神经网络 预测 优化

2024

化工进展
中国化工学会,化学工业出版社

化工进展

CSTPCD北大核心
影响因子:1.062
ISSN:1000-6613
年,卷(期):2024.43(z1)