首页|生产过程中异常检测的统计方法与应用

生产过程中异常检测的统计方法与应用

扫码查看
旨在探索和评估生产过程中异常检测的多种统计方法及其应用.随着工业自动化和智能制造的快速发展,确保生产过程的稳定性和产品质量变得尤为重要.我们通过对"华鲁恒升化工股份有限公司"在生产尿素过程中实施的异常检测策略的案例分析,应用了一系列统计分析和机器学习技术,包括描述性统计分析、控制图(Shewhart图、CUSUM图、EWMA图)、主成分分析(PCA)和聚类分析,以识别和处理生产过程中的异常情况.研究发现,综合应用这些方法可以有效监控生产流程,及时发现异常,从而提高生产效率和产品质量.此外,我们还讨论了每种方法的优势和局限性,并提出了针对生产过程异常检测的建议.最后,探讨了未来研究方向,包括深度学习在异常检测中的潜力以及跨领域方法的融合研究.
Statistical Methods and Applications for Anomaly Detection in the Production Process
This study aims to explore and evaluate various statistical methods and their applications for anomaly detection in the production process.With the rapid development of industrial automation and intelligent manufacturing,ensuring the stability of the production process and product quality has become particularly important.We applied a series of statistical analysis and machine learning techniques,including descriptive statistical analysis,control charts(Shewhart chart,CUSUM chart,EWMA chart),principal component analysis(PCA),and clustering analysis,to identify and handle abnormal situations in the production process of urea by analyzing a case study of the anomaly detection strategy implemented by Hualu Hengsheng Chemical Co.,Ltd.Research has found that the comprehensive application of these methods can effectively monitor production processes,detect anomalies in a timely manner,and thereby improve production efficiency and product quality.In addition,we also discussed the advantages and limitations of each method and proposed suggestions for anomaly detection in the production process.Finally,future research directions were explored,including the potential of deep learning in anomaly detection and the fusion of cross domain methods.

anomaly detectionstatistical methodsmachine learningproduction processcontrol chartPrincipal Component Analysis(PCA)cluster analysis

柯友芳

展开 >

青海盐湖工业股份有限公司,青海格尔木 816000

异常检测 统计方法 机器学习 生产过程 控制图 主成分分析 聚类分析

2024

化工设计通讯
湖南化工医药设计院

化工设计通讯

影响因子:0.126
ISSN:1003-6490
年,卷(期):2024.50(9)