首页|基于数据驱动的化工过程参数报警阈值优化

基于数据驱动的化工过程参数报警阈值优化

扫码查看
为了提高化工过程报警系统的性能,需要对过程参数的报警阈值进行优化设置.针对传统阈值方法存在的问题,采用核密度估计方法、基于历史数据对过程报警状态进行估计,从最小化误报警和漏报警概率的角度建立了优化过程报警阈值的目标函数,并采用数值优化的方法进行求解.应用于TE过程的仿真结果表明,此方法能够有效地减少过程误报警的次数,并且对漏报警的次数进行抑制.
A data-driven approach to chemical process alarm threshold optimization
In order to improve the performance of chemical process alarm systems, it is imperative to optimize assignments of process alarm thresholds. In response to limitations of traditional threshold assignment methods, based on historical data, this paper firstly invokes kernel density estimation methods to identify process alarm states before an objective associated with alarm threshold optimization in terms of minimizing the probabilities of false and missed alarms is established along with enabling numerical solvers. Simulation results on TE process demonstrate that the proposed approaches can effectively reduce the number of false alarms as well as limit that of missed alarms.

process alarmsthresholdsoptimizationkernel density estimation

刘恒、刘振娟、李宏光

展开 >

北京化工大学信息科学与技术学院,北京100029

过程报警 阈值 优化 核密度估计

2012

化工学报
中国化工学会 化学工业出版社

化工学报

CSTPCDCSCD北大核心EI
影响因子:1.26
ISSN:0438-1157
年,卷(期):2012.63(9)
  • 19
  • 2