首页|微气泡旋流气浮装置内流动分析与结构优化

微气泡旋流气浮装置内流动分析与结构优化

扫码查看
基于Euler-Euler多相流模型,对一种微气泡旋流气浮装置内的油水分离多相流动过程进行了数值计算.实际生产过程中,装置内油滴会与注入的旋流气碰撞并黏附形成油滴-气泡黏附体,因此计算过程中将微气泡旋流气浮装置内油-气-水三相流动过程简化为油气混合相和水相的两相流动过程,并依据工业生产中实际的油水分离效率确定数值计算中油气混合相的表观密度,然后考察了微气泡旋流气浮装置中导流管宽度和倾角对旋流强度及分离效率的影响规律.模拟结果表明,随导流管宽度增加,装置分离效率及出油口含油浓度先增加后迅速降低,导流管宽度为53 mm时装置的分离效果达到最优;随着导流管倾角增加,装置分离效率及顶部出油口含油浓度先上升再下降,导流管倾角为9°时装置的分离效果达到最优.
Flow analysis and structure optimization of micro-bubble swirling air flotation device
Based on the Euler-Euler multiphase flow model,the oil-water separation multiphase flow process in a micro-bubble swirling air flotation device was numerically calculated.In the actual production process,the oil droplet in the device will collide with the injected swirling gas and adhere to form an oil drop-bubble adhesive.Therefore,the three-phase flow process of oil-gas-water in the micro-bubble swirling gas flotation device was simplified into a two-phase flow process of oil-gas mixed phase and water phase.The mixed phase density of oil and gas was determined by comparing the actual separation efficiency with the calculated results.Then,through the analysis of the calculation results,the influence law of the width and inclination angle of the diversion tube on the swirl strength and separation efficiency of the micro-bubble swirl air flotation device was obtained.The numerical calculations results show that the separation efficiency and the oil content of the outlet of the device increase first and then decrease with the increase of the width of the diversion pipe,and the separation efficiency of the device reached the best when the diversion pipe width was around 53 mm.The separation efficiency of the device and the oil concentration at the top outlet first increase and then decrease with the increase of the diversion tube inclination angle.The separation efficiency of the device reaches the optimum when the diversion pipes inclination angle was around 9°.

swirling air flotationseparation efficiencydiversion structurenumerical simulationmicro-bubbles

李匡奚、于佩潜、王江云、魏浩然、郑志刚、冯留海

展开 >

北京低碳清洁能源研究院,北京 102211

中国石油大学(北京)重质油全国重点实验室,北京 102249

过程流体过滤与分离技术北京市重点实验室,北京 102249

中国石油大学(北京)克拉玛依校区,新疆克拉玛依 834000

展开 >

旋流气浮 分离效率 导流结构 数值模拟 微气泡

2024

化工学报
中国化工学会 化学工业出版社

化工学报

CSTPCD北大核心
影响因子:1.26
ISSN:0438-1157
年,卷(期):2024.75(z1)