为了解决现有基于灰度图像分割的水位线检测方法易受水面耀光、倒影等复杂光照条件的影响,且在高洪期水尺易被漂浮物缠绕引起测量粗大误差的问题,设计了一种基于深度学习的水尺水位智能监测方法.该方法采用不同条件下采集并由人工精确标注的水尺、水面和漂浮物三分类样本图像构建数据集,训练深层全卷积神经网络,实现了对水尺图像的逐像素分类预测,最终在语义分割图像中检测水位线的像素位置,将其转化为实际水位值.试验结果表明:该方法能够克服传统方法在图像特征提取方面的不足,提升图像分割对野外复杂变化环境的适应性,实现测量有效性的识别,达到水尺水位智能监测的目的,测量的综合不确定度小于3 cm.
Intelligent water-level monitoring method based on image semantic segmentation
water-level measurementdeep learningimage processingartificial intelligenceintelligent water conservancy