首页|基于多源预报残差的卡尔曼滤波校正技术

基于多源预报残差的卡尔曼滤波校正技术

扫码查看
为充分利用实测水位流量序列所蕴含的信息,挖掘实测水位流量数据对洪水预报结果的实时在线校正作用以提高洪水预报精度,提出了一种基于多源预报残差的卡尔曼滤波校正技术,该技术采用基于水文要素观测值的涨落差法和残差自回归模型构建多源误差信息源,利用卡尔曼滤波技术进行多源误差序列融合来对洪水预报结果进行实时校正.浙江钱塘江流域实测资料验证结果表明:基于多源预报残差的卡尔曼滤波校正技术能够显著降低预报模型的流量模拟误差,平均相对误差减小超过10%.
Kalman filter correction technique based on multi-source forecast residuals
In order to improve the flood forecasting accuracy,the real-time online correction of the flood forecasting results by mining the measured water level and discharge data is used to make full use of the information contained in the measured sequences of water level and discharge.A Kalman filter correction technique is proposed based on multi-source forecast residuals.Corresponding rising difference model and autoregressive model were used to construct the multi-source error information source,and then Kalman filtering technology was used to fuse the multi-source error sequences for the real-time correction of flood forecast results.This paper selected the Qiantang River Basin of Zhejiang Province as the study area.The validation results show that the multi-source residual fusion correction technique based on Kalman filtering technology can significantly reduce the flow simulation error and the average relative error is reduced by more than 10%.

multi-source error fusion correctionflood forecastingKalman filteringautoregressive model of error

金桂中、陈国灿、赵兰兰、石朋、周玉良

展开 >

浙江省绍兴市上虞区水利局,浙江绍兴 312351

浙江省绍兴市上虞区水文站,浙江绍兴 312375

水利部信息中心,北京 100053

河海大学水文水资源学院,江苏南京 210098

合肥工业大学土木与水利工程学院,安徽合肥 230009

展开 >

多源误差融合校正 洪水预报 卡尔曼滤波 误差自回归模型

国家自然科学基金项目

52179011

2024

河海大学学报(自然科学版)
河海大学

河海大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.803
ISSN:1000-1980
年,卷(期):2024.52(4)