首页|机理-数据混合驱动的气象敏感负荷需求响应潜力评估

机理-数据混合驱动的气象敏感负荷需求响应潜力评估

扫码查看
为准确评估电网中气象敏感负荷需求响应潜力,提出了一种基于机理-数据驱动方法融合的气象敏感负荷需求响应潜力评估方法.该方法根据数据驱动的双分支神经网络模型估算电网层级的气象敏感负荷功率,基于热力学等值模型建立气象敏感负荷的机理聚合模型,并以聚合功率与估算功率误差最小为目标,采用控制变量法和粒子群优化算法优化确定机理聚合模型的等效参数(温控负荷设备数量、温度设定值等),同时综合考虑用户舒适度与意愿度等因素评估气象敏感负荷需求响应潜力.实例验证结果表明,该方法估算的气象敏感负荷功率与温度具有显著相关性,获得的机理聚合模型等效参数及需求响应潜力与实际情况相符且合理.
Mechanism-data hybrid driven assessment method for demand response potential of meteorologically sensitive load
To accurately assessing the demand response potential of meteorologically sensitive loads in the power grid,an assessment method for the demand response potential of meteorologically sensitive load is proposed based on the fusion of mechanism-data hybrid driven methods.At first,the meteorologically sensitive load power at the grid level is estimated based on a data-driven two-branch neural network model.Secondly,based on the equivalent thermal parameters model,a physical aggregation model of meteorological sensitive loads is established.With the goal of minimizing the error between the aggregate power and the estimated power,the control variable method and the particle swarm optimization(PSO)algorithm are used to optimize the equivalent parameters of the physical aggregation model,including the number of temperature control load devices and the temperature setting values.Finally,the user's comfort and willingness are considered to evaluate the demand response potential of meteorologically sensitive loads.The case analysis shows that the meteorologically sensitive load power estimated by the proposed method has a significant correlation with temperature,and the obtained equivalent parameters of the physical model and demand response potential are consistent and reasonable with the actual situation.

meteorologically sensitive loadsmechanism-data hybrid drivendemand response potentialequivalent thermal modelaggregation modeling

高攀、秦川、武思远、王珂、黄奇峰

展开 >

河海大学电气与动力工程学院,江苏南京 211100

国网江苏省电力有限公司营销服务中心,江苏南京 210019

气象敏感负荷 机理-数据混合驱动 需求响应潜力 热力学等值模型 聚合建模

国家电网有限公司总部科技项目

5100-202218387A-2-0-ZN

2024

河海大学学报(自然科学版)
河海大学

河海大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.803
ISSN:1000-1980
年,卷(期):2024.52(5)