首页|基于改进K-means算法的排水管网监测点位优化

基于改进K-means算法的排水管网监测点位优化

扫码查看
为切实提高工程监测成效,合理利用资源,提出基于改进K-means算法的排水管网监测点布置优化方法.以华东区域H市排水管网为案例,以23个原始监测点的监测数据为基础,通过原始数据处理,BIRCH预聚类确定优化监测点个数和初步优化监测点,再用K-means聚类确定最终优化监测点后,输出16个保留监测点位.经验证,监测点优化后对H市排水管网的数据输出无影响.
Optimization of Monitoring Points in Drainage Pipe Network Based on Improved K-means Algorithm
In order to effectively improve the effectiveness of engineering monitoring and rational utilization of resources,an optimization method for setting monitoring points of drainage pipe network was established based on improved K-means algorithm.Taking the drainage pipe network in H City in East China region as an exam-ple,based on the monitoring data of 23 original monitoring points,the monitoring points were preliminary opti-mized through raw data processing and BIRCH pre-clustering,then the final optimized monitoring points were de-termined by K-means clustering,and 16 retained monitoring points were output.It was proved that the optimized monitoring points had no influence on the data output of the drainage pipe network in H city.

Monitoring point optimizationBIRCH cluster analysisK-means cluster analysisDrainage pipe network

赵文涓、程雨涵、李梅

展开 >

安徽建筑大学环境与能源学院,安徽 合肥 230009

清华大学合肥公共安全研究院,安徽 合肥 230601

监测点位优化 BIRCH聚类分析 K-means聚类分析 排水管网

安徽省重点研究与开发计划

202104i07020012

2024

环境监测管理与技术
江苏省环境监测中心,南京市环境监测中心站

环境监测管理与技术

CSTPCD北大核心
影响因子:1.086
ISSN:1006-2009
年,卷(期):2024.36(1)
  • 10