首页|基于EEMD和小波阈值的局部放电去噪方法

基于EEMD和小波阈值的局部放电去噪方法

扫码查看
局部放电是开关柜运行状态的重要表征.而现场采集得到的局部放电往往被周期窄带和高斯白噪声所掩盖,为了能准确对局部放电进行分析,保证开关柜安全性和可靠性,提出了基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和小波阈值的去噪方法.首先对含噪局部放电进行EEMD分解,使用相关系数对模态分量(Intrinsic Mode Functions,IMFs)进行阈值判断,以去除虚假分量,随后对保留的IMFs进行小波阈值处理,最后将IMFs重构即可得到有用的局部放电信号.测试结果证明,该方法不仅可以有效地去除噪声信号,还能较好地保留局部放电的特征.
Partial Discharge Denoising Method Based on EEMD and Wavelet Threshold
Partial discharge(PD)is a critical indicator of the operational status of switchgear cabinets.However,the partial discharge signals collected on-site are often obscured by periodic narrowband interference and Gaussian white noise.To accurately analyze these signals and ensure the safety and reliability of switchgear,a denoising method combining Ensemble Empirical Mode Decomposition(EEMD)and wavelet thresholding is proposed.Initially,noisy partial discharge signals undergo EEMD decomposition.The Intrinsic Mode Functions(IMFs)are then subjected to threshold evaluation using correlation coefficients to eliminate spurious components.Subsequent wavelet threshold processing is applied to the retained IMFs.Finally,the IMFs are reconstructed to obtain a useful partial discharge signal.Test results demonstrate that this method effectively removes noise while preserving the characteristics of partial discharge,enhancing the interpretability and reliability of the analysis.

partial discharge(PD)ensemble empirical mode decomposition(EEMD)wavelet threshold denoisingcorrelation coefficient

杨琪、赵芝希、林国武、凌志、陈丽丹、曹宏悦

展开 >

广州宏能电力工程设计有限公司,广州 510000

珠海近道能源科技有限公司,珠海 519000

广州航海学院轮机工程学院,广州 510725

广州城市理工学院电气工程学院,广州 510800

展开 >

局部放电 集合经验模态分解 小波阈值去噪 相关系数

2024

环境技术
广州电器科学研究院有限公司

环境技术

CSTPCD
影响因子:0.995
ISSN:1004-7204
年,卷(期):2024.42(7)