首页|富硅磁改性生物质炭的制备及其对Cd(Ⅱ)和As(Ⅲ)复合污染水体的吸附机制

富硅磁改性生物质炭的制备及其对Cd(Ⅱ)和As(Ⅲ)复合污染水体的吸附机制

扫码查看
镉(Cd)和砷(As)往往共存于矿区周边的水体及农田土壤中,由于二者化学行为相反,难以同时对其进行去除。因此,通过制备得到了一种新型富硅磁改性生物质炭(SMB)材料,用于同时吸附水体中的镉(Cd)和砷(As)。试验首先通过共沉淀法制备得到磁铁矿与生物质的混合物,将其与3种不同类型的硅酸盐(Na2SiO3、CaSiO3和SiO2)混合,而后在不同温度下(300、500和700℃)进行热解得到复合材料,通过复合吸附试验确定最佳制备条件。最后通过单吸附质及复合吸附质体系吸附试验,系统研究初始pH、吸附时间、初始浓度和添加顺序对SMB吸附Cd(Ⅱ)和As(Ⅲ)的影响,并结合SEM、FT-IR和XRD等表征分析阐明吸附机制。结果表明,在700 ℃下热解含5%CaSiO3的生物质-磁铁矿混合物制备得到的材料对Cd(Ⅱ)和As(Ⅲ)的吸附效果最佳,在初始浓度分别为30 mg·L-1和10 mg·L-1的Cd(Ⅱ)和As(Ⅲ)溶液中,去除率分别达到了 92。04%和60。59%。SEM、FT-IR、XRD和BET等表征结果证实,SMB不仅具有较大的比表面积和丰富的官能团结构,还具有一定磁力特性;在单元素吸附试验中,Cd(Ⅱ)和As(Ⅲ)的最佳吸附pH均为6,分别在1h和8 h达到吸附平衡,准二级动力学模型更好地拟合了 SMB对Cd(Ⅱ)和As(Ⅲ)的吸附过程。复合吸附体系中,Cd(Ⅱ)和As(Ⅲ)的最佳吸附pH为7。复合体系等温吸附试验结果表明,Freundlich模型更好地拟合了材料对Cd(Ⅱ)和As(Ⅲ)的等温吸附过程,且元素之间存在协同和拮抗效应。SMB对As(Ⅲ)与Cd(Ⅱ)吸附的过程中能在铁氧化物表面形成A型与B型三元表面络合物,其中A型三元表面络合物的形成能大幅提高材料对As(Ⅲ)的吸附能力,但由于共存体系下材料优先吸附了 As(Ⅲ),因此,As(Ⅲ)与Cd(Ⅱ)同时存在时协同作用主要由静电作用、共沉淀以及B型三元表面络合物的形成所控制。拮抗效应则是由于两种重金属元素竞争羟基结合位点所致。综上所述,SMB材料对水体中的Cd(Ⅱ)和As(Ⅲ)均具有较好的吸附效果,可用于高效修复Cd(Ⅱ)和As(Ⅲ)复合污染水体。
Preparation of Silicon-based Magnetic Biochar and Its Remediation Mechanism for Cd(Ⅱ)and As(Ⅲ)Co-contaminated Water
Cadmium(Cd)and arsenic(As)often coexist in water and agricultural soils around mining areas,and it is difficult to remove them at the same time due to their opposite chemical behaviors.Therefore,this study employed a co-precipitation-pyrolysis method to synthesize silica-based magnetic biochar(SMB)materials for the remediation of water contaminated with both Cd and As.The optimization of preparation conditions involved introducing three different types of silicates(Na2SiO3,CaSiO3,and SiO2)into the biomass-magnetite mixture,followed by pyrolysis at various temperatures(300℃,500℃,and 700℃),and the optimal preparation conditions were determined based on the composite batch experiments.Finally,batch experiments in both single-element and composite systems were used to systematically investigate the impact of initial pH,adsorption time,and initial concentration on the adsorption behavior of SMB for Cd(Ⅱ)and As(Ⅲ).The adsorption mechanism was elucidated by combining it with characterization analyses,such as SEM,FT-IR,and XRD.The composite adsorption test determined that the material obtained from a pyrolyzing biomass-magnetite mixture containing 5%CaSiO3 at 700℃ exhibited the most effective adsorption,with removal rates reaching 92.04%for Cd(Ⅱ)and 60.59%for As(Ⅲ)in Cd(Ⅱ)and As(Ⅲ)solutions with initial concentrations of 30 and 10 mg·L-1.Characterization including SEM,FT-IR,XRD,and BET showed that the material had a significant surface area,rich functional groups,and magnetic properties.In the single-element batch experiment,the optimal adsorption pH for Cd(Ⅱ)and As(Ⅲ)was 6,with equilibrium reached at 1 h and 8 h,respectively.The quasi-secondary kinetic model effectively described the adsorption process of Cd(Ⅱ)and As(Ⅲ)by SMB.In the composite system,the optimum adsorption pH was 7.The Freundlich model better fitted the isothermal adsorption processes of Cd(Ⅱ)and As(Ⅲ)by the materials.The results of the batch experiments in the composite system revealed that both synergistic and antagonistic effects existed between Cd(Ⅱ)and As(Ⅲ).Synergistic effects were manifested through the formation of A-type and B-type ternary surface complexes during the adsorption of As(Ⅲ)and Cd(Ⅱ)by SMB.The formation of A-type ternary surface complexes significantly enhanced the material's adsorption capacity for As(Ⅲ).However,in the coexistence system,the synergistic effect was primarily controlled by electrostatic interaction,co-precipitation,and the formation of B-type ternary surface complexes due to the preference for adsorbing As(Ⅲ).Antagonistic effects resulted from the competition between the two heavy metal elements for binding sites with hydroxyl groups.In summary,the synthesized SMB material demonstrated effective adsorption of both Cd and As in water,presenting a promising approach for the efficient remediation of water bodies co-contaminated with Cd(Ⅱ)and As(Ⅲ).

modified biocharwater remediationheavy metalsadsorption mechanismsynergistic effects

田欣、孙淇、陈瑶、王佳豪、叶正钱、赵科理、吴骥子

展开 >

浙江农林大学环境与资源学院,临安 311300

浙江农林大学浙江省土壤污染生物修复重点实验室,临安 311300

改性生物质炭 水体修复 重金属 吸附机制 协同作用

2025

环境科学
中国科学院生态环境研究中心

环境科学

北大核心
影响因子:1.913
ISSN:0250-3301
年,卷(期):2025.46(1)