Study on the Influence of Detonation Mode on Rock Mass Damage Law in Water Hole Charge
This study addresses the issue of suboptimal blasting efficacy in water hole blasting within open-pit mines by investigating the impact of detonation modes on rock mass damage.Utilizing a water interval charge configuration at the bottom of the borehole,a numerical simulation model was developed to analyze how variations in the initiation point's location and initiation height affect the meso-damage,stress variations,and energy transfer characteristics of the rock mass.The employed image processing technique facilitates the binarization of rock mass damage images,enabling an analysis of the distribution characteristics of rock mass damage and fragmentation post-blasting.The effectiveness of the blasting process was assessed by incorporating a block evaluation index in conjunction with field testing.The findings indicate that variations in the detonation point position influence the energy distribution and stress propagation post-explosion,resulting in differential rock mass damage.Notably,during reverse detonation,the rock at the orifice experiences uniform fragmentation,which is advantageous for subsequent excavation activities.The presence of a water interval at the bottom of the hole extends the duration of energy and stress exerted on the hole's base.Consequently,the damage area of the rock mass under reverse initiation increases by 19.76%compared to forward initiation and by 5.78%compared to central initiation.When the water interval at the bottom of the hole measures 0.5 meters,the initiation height is set at twice the interval length from the water interval,resulting in a distance of 1 meter.Under these conditions,the rock mass damage increases by 2.3%,while explosive unit consumption decreases by 3%~4%.The bulk size,block unevenness coefficient,and bulk rate are significantly reduced,resulting in enhanced blasting efficiency and improved blasting outcomes.This research offers valuable insights for optimizing charge structure and adjusting blasting parameters in engineering applications.