首页|高光谱遥感在植物物种多样性监测中的应用与展望

高光谱遥感在植物物种多样性监测中的应用与展望

扫码查看
植物多样性对维持生态系统过程、服务和功能具有重要作用,近年来高光谱遥感技术的蓬勃发展为植物多样性调查评估提供了新的信息源。物种多样性是通过遥感技术监测植物多样性的重要方面,高光谱遥感能够获取丰富的光谱和空间信息,有助于物种的识别和分类,能够提高植物物种多样性估算的精度。基于文献资料调研,本文总结了高光谱遥感在植物物种多样性监测中的应用进展,阐述了高光谱遥感技术监测植物物种多样性的基本原理,梳理了主要的高光谱数据来源、常用的光谱变换技术和物种分类方法,并提出展望。结果表明:①高光谱遥感在植物物种多样性监测中的应用包括物种光谱特征提取、物种识别与分类以及物种多样性估算 3 类。②光谱变异假说是高光谱遥感用于植物物种多样性测度的重要理论基础,通常利用经验或半经验方法,建立物种多样性与光谱多样性指标间的统计模型,实现物种多样性估算。③高光谱数据来源包括星载、航空和地基平台,常用的光谱变换技术有SG平滑(Savitzky-Golay Smoothing)、包络线去除、导数变换、构建植被指数等,支持向量机、随机森林等是广泛应用的物种分类方法。未来建议加强高光谱遥感尤其是国产数据在植物物种多样性监测中的推广和应用,构建多尺度的植物光谱库,配套发展融合不同平台高光谱数据的智能计算和信息提取算法,以提高植物物种多样性遥感监测的精度和效率。
Applications and Prospects of Hyperspectral Remote Sensing for Monitoring Plant Species Diversity
Plant diversity plays a crucial role in maintaining ecosystem process,services and functions.In recent years,the rapid advancement of hyperspectral remote sensing technology has provided new data sources for plant diversity investigation and assessment.Monitoring plant species diversity is an important aspect of using remote sensing technology to assess overall plant diversity.Hyperspectral remote sensing can capture abundant spectral and spatial information,which aids in plant species identification and classification,and enhances the accuracy of estimating plant species diversity.Based on literature reviews,this paper summarizes the applications of hyperspectral remote sensing in monitoring plant species diversity and explains the basic principles of using hyperspectral remote sensing for this purpose.It also outlines the main hyperspectral data sources,common spectral transformation techniques,and species classification methods.Finally,the paper discusses future research directions and prospects.The main conclusions are as follows:(1)The applications of hyperspectral remote sensing in monitoring plant species diversity include the extraction of spectral features for plant species,identification and classification of plant species,and estimation of plant species diversity.(2)The spectral variation hypothesis forms an important theoretical basis for monitoring plant species diversity using hyperspectral remote sensing technology.Typically,empirical or semi-empirical methods are used to establish statistical models linking plant species diversity with spectral diversity indicators,which are then used to assess diversity.(3)The hyperspectral data is typically obtained from satellite,aircraft,and ground-based platforms.Common spectral transformation techniques include Savitzky-Golay Smoothing(SG smoothing),envelope removal,derivative transformation,and construction of vegetation indices.Support Vector Machines and Random Forests are widely used for plant species classification in hyperspectral remote sensing applications.This paper recommends strengthening the use of domestic hyperspectral remote sensing data for monitoring plant species diversity,building multi-scale spectral database for plant species,and developing intelligent algorithms for processing and extracting information from hyperspectral data across various platforms to improve the accuracy and efficiency of monitoring plant species diversity.

hyperspectral remote sensingremote sensing applicationsplantspecies identificationspecies diversity

万凤鸣、万华伟、高吉喜、王永财、张志如

展开 >

中国环境科学研究院,北京 100012

生态环境部卫星环境应用中心,北京 100094

首都师范大学资源环境与旅游学院,北京 100048

高光谱遥感 遥感应用 植物 物种识别 物种多样性

2025

环境科学研究
中国环境科学研究院

环境科学研究

北大核心
影响因子:1.775
ISSN:1001-6929
年,卷(期):2025.38(1)