首页|Boron shielding design for neutron and gamma detectors of a pulsed neutron tool

Boron shielding design for neutron and gamma detectors of a pulsed neutron tool

扫码查看
Shielding materials are critical for downhole pulsed neutron tool design because they directly influence the accuracy of for-mation measurements.A well-designed shield configuration ensures that the response of the tool is maximally representative of the formation without being affected by the tool and borehole environment.This study investigated the effects of boron-containing materials on neutron and gamma detectors based on a newly designed logging-while-drilling tool that is currently undergoing manufacturing.As the boron content increased,the ability to absorb thermal neutrons increased significantly.Through simulation,it was proven that boron carbide(B4C)can be used as an effective boron shielding material for thermal neutrons,and is therefore employed in this work.To shield against thermal neutrons migrating from the mud pipes,the optimal shielding thicknesses for the near-and far-neutron detectors were determined to be 5 and 4 mm.At a porosity of 25 p.u.,near-neutron sensitivity exhibited a 5.6%increase.Furthermore,to shield the capture gamma generated by thermal neutrons once they enter the tool from the mud pipe and formation,internal and external shields for the gamma detector were evaluated.The results show that the internal shield requires a boron content of 75%,whereas the external shield has a thickness of 14.2 mm thickness and a boron content of 25%to minimize the tool effect.

Nuclear well loggingPulsed neutron toolBoron shielding

Xin-Yang Wang、Jun-Yan Chen、Qiong Zhang

展开 >

University of Electronic Science and Technology of China,Chengdu 611731,China

2025

核技术(英文版)
中国科学院上海应用物理研究所,中国核学会

核技术(英文版)

影响因子:0.667
ISSN:1001-8042
年,卷(期):2025.36(1)