首页|基于深度学习方法荒漠草原典型植物花朵计数

基于深度学习方法荒漠草原典型植物花朵计数

扫码查看
草原植物花朵计数可以帮助我们了解草原植物的生长状况、繁殖能力、群落结构等信息,通过人工计数方法获取草原上不同物种花朵丰度是一个费时费力的过程.本研究基于深度学习目标检测方法,在鄂尔多斯荒漠草原上 10 个样地和 50 个样方上开展检测模型训练、评估和应用.从YOLOv7 的 3 个模型整体表现来看,YOLOv7-E6E的F1-sorce和mAP@0.5 均可达到0.7 以上,具有较高的识别精度.从YOLOv7 的 3 个模型在 5 种花朵检测的表现来看,YOLOv7-X、YOLOv7-E6E模型在北芸香、蒙古韭、细叶韭的检测上mAP@0.5 高于 0.8,而 3 个模型中仅有YOLOv7-E6E在蒺藜、兔唇花的mAP@0.5 超过 0.6.从模型在 50 个样方的花朵计数应用来看,YOLOv7-E6E模型花朵计数的总体正确率为 0.91,能满足这 5 种草原开花植物检测和计数的需要.综上所述,通过深度学习花朵快速计数可以提高样方尺度花期植物调查效率,但为满足大规模物种调查和计数的任务需求,仍需扩大样本量和不断改进模型结构,以提高模型植物花朵检测的整体性能.
Flower counting for typical plants in desert steppe using deep learning method
Desert steppe plant flower counting can help us understand the growth status,reproductive capacity,community structure and other information of plants.It is a time-consuming and labor-intensive process to obtain the flower abundance of different species in grassland by manual counting.Based on the deep learning target detection method,this study trained detection model,and then evaluated and applicated on 10 plots with 50 quadrats in the desert steppe.From the overall performance of the three models of YOLOv7,the results of YOLOv7-E6E model were very good for some types of flowers,with F1-sorce and mAP@0.5 higher than 0.7.The performance of the 3 models of YOLOv7 in the detection of 5 kinds of flowers,the mAP@0.5 of the YOLOv7-X and YOLOv7-E6E models is higher than 0.8 in the detection of Haplophyllum dauricum,Allium mongolicum,and Allium tenuissimum,while only the mAP@0.5 of YOLOv7-E6E in Tribulus terrestris and Lagochilus ilicifolius exceeds 0.6.Application of the model in flower counting of 50 quadrats,the overall accuracy rate of flower counting of the YOLOv7-E6E model is 0.91,which can meet the needs of detecting and counting these 5 grassland flowering plants.To sum up,the rapid counting of flowers by deep learning can improve the survey efficiency of flowering plants at the quadrat scale.However,in order to meet the task requirements of large-scale species survey and counting,it is still necessary to expand the sample size and continuously improve the model structure to improve the overall performance of flower detection in model plants.

Deep learningobject detectionflower countinggrassland plant

王永财、万华伟、高吉喜、胡卓玮

展开 >

首都师范大学 资源环境与旅游学院,北京 100048

生态环境部 卫星环境应用中心,北京 100094

深度学习 目标检测 花朵计数 草地植物

国家重点研发计划项目

2021YFB3901102

2024

环境生态学

环境生态学

CSTPCD
ISSN:
年,卷(期):2024.6(2)
  • 30