首页|基于WRF和随机森林的臭氧短期预报模型研究——以青岛为例

基于WRF和随机森林的臭氧短期预报模型研究——以青岛为例

扫码查看
本研究以青岛市为例,基于WRF模式预报与随机森林方法,利用 2022 年 9 月 9 个站点的预报与实况数据进行了气象要素预报的订正,回代气象要素订正数据并加入静态数据建立了O3 浓度的短期预报模型,实现了每个站点预报时效为 7d、时间分辨率为 1h的预报,对气象要素订正与O3 预报效果进行评估与分析.结果表明,气象要素 2m气温、地面气压、2m相对湿度、10 m风速均有不同程度的订正,尤其是地面气压与10m风速订正效果明显;O3 浓度预报模型有良好的预报效果,RMSE较WRF预报减少了 22.1%,站点预报误差均有改善且大部分效果明显.
Research on short-term ozone forecasting model based on WRF and random forest——A case study of Qingdao
This study takes Qingdao as an example,based on the WRF model forecast and the random forest method,the forecast and the real data of 9 stations in September 2022 are used to revise the meteorological element forecast,and the short-term forecast model of O3 concentration is established by substituting the revised data of meteorological elements and adding the static data to realize the forecast with the time resolution of 1 hour for 7 days at each station,and the effect of the revision of the meteorological elements and the O3 prediction is evaluated and analyzed.The results show that the meteorological elements 2 m air temperature,surface pressure,2 m relative humidity,and 10 m wind speed are all revised to different degrees,especially the surface pressure and 10 m wind speed are revised with obvious effects;the O3 concentration prediction model has a good prediction effect,the RMSE is reduced by 22.1%compared with the WRF prediction,and the station prediction errors are improved and most of the effects are obvious.

Ozone(O3)random forestrevision of forecastsQingdao

卢维肖、周易、杨元建、孙爱青、方渊、孟赫

展开 >

南京信息工程大学 大气物理学院,江苏 南京 210044

南京信息工程大学 管理工程学院,江苏 南京 210044

华润新能源(睢宁)有限公司,江苏 徐州 221200

山东省青岛生态环境监测中心,山东 青岛 266003

展开 >

臭氧 随机森林 预报订正 青岛市

国家自然科学基金优秀青年科学基金

42222503

2024

环境生态学

环境生态学

CSTPCD
ISSN:
年,卷(期):2024.6(3)
  • 31