首页|基于机器学习的漠阳江流域总磷浓度变化预测研究

基于机器学习的漠阳江流域总磷浓度变化预测研究

扫码查看
总磷是重要的水质指标,准确预测河流总磷变化是流域水污染精准防控的基础.基于此,以漠阳江流域为例,收集 2022年 1 月至 2023 年 6 月中朗、河口镇和江城 3 个断面的总磷浓度数据,分析流域内总磷浓度的分布特征,采用支持向量机模型和随机森林模型对江城断面总磷进行预测.结果表明,漠阳江流域总磷存在显著的时空异质性,河口镇和江城断面年均总磷浓度类似,分别为 0.198 mg/L和 0.193 mg/L,高于中朗断面总磷浓度(0.149 mg/L);总磷和降雨量之间存在明显的共变关系,降雨期间各断面的总磷浓度均呈现上升趋势.随机森林模型的预测精度高于支持向量机模型,其在测试期预测值和实际值之间的相关性系数(R2)为 0.67,平均相对误差(MRE)为12.70%,平均绝对误差(MAE)为0.036 mg/L.将当前总磷作为时间解释变量纳入模型后,随机森林模型的预测精度进一步提高,R2 增加至 0.75,MRE降低至 6.44%,MAE降低至 0.018 mg/L.整体来看,随机森林模型具有良好的泛化能力,能够较好地预测漠阳江流域总磷浓度的变化规律.
Research on total phosphorus prediction in the Moyang River Basin based on machine learning models
Total phosphorus(TP)is an important indicator of water quality.Accurate prediction of TP variation in rivers is the basis for precise prevention and control of water pollution in river basins.On this basis,taking the Moyang River Basin as an example,TP data were collected from three sections,namely Zhonglang,Hekouzhen,and Jiangcheng,from January 2022 to June 2023 to analyze the distribution characteristics of TP,and to predict the TP at Jiangcheng section based on support vector machine model and random forest model.The results indicated that there was significant spatiotemporal heterogeneity in TP in the Moyang River Basin.The average annual TP concentrations at the Hekouzhen and Jiangcheng sections were similar(0.198 mg/L and 0.193 mg/L,respectively),higher than those at the Zhonglang section(0.149 mg/L).There was a clear covariant relationship between TP and rainfall,and the TP concentration at each section showed an upward trend during rainfall period.Compared with support vector machine model,the prediction accuracy of random forest model was higher,in which the correlation coefficient(R2)between the predicted and actual values during the testing period was 0.67,the mean relative error(MRE)was 12.70%,and the mean absolute error(MAE)was 0.036 mg/L.After incorporating the current TP as a time explanatory variable into the model,the prediction accuracy of the random forest model was further improved,with R2 increasing to 0.75,MRE decreasing to 6.44%,and MAE decreasing to 0.018 mg/L.Overall,the random forest model owned good generalization ability and could predict the variations of TP concentration in the Moyang River Basin well.

Total phosphorusrandom forestsupport vector machinepredictionMoyang River Basin

徐闯、刘晋涛、薛弘涛、余香英、陈葳

展开 >

广东省环境科学研究院,广东 广州 510045

粤港澳环境质量协同创新联合实验室,广东 广州 510045

总磷 随机森林 支持向量机 预测 漠阳江流域

广东省重点领域研发计划项目广东省科技创新战略专项

2020B11113500012019B121205004

2024

环境生态学

环境生态学

CSTPCD
ISSN:
年,卷(期):2024.6(8)
  • 12