首页|基于关键点检测方法的焊缝识别

基于关键点检测方法的焊缝识别

扫码查看
为保证自动焊接的质量,提高焊缝识别的准确性和适应性,提出一种焊缝特征提取的关键点检测方法.基于卷积神经网络设计了焊缝特征提取网络,该网络通过卷积、池化操作提取焊缝特征.将来自深层的特征图进行上采样,最后将深层特征图和浅层特征图相融合,提高焊缝特征提取精度.输出焊缝图像的热力图来预测焊缝特征点位置,实现多种坡口焊缝的识别定位,且不需要非极大值抑制算法,提升了特征提取速度.采集不同的焊缝特征图像,进行网络模型训练.结果表明,焊缝特征点定位均方根误差为 0.187 mm,网络模型在焊缝特征点识别任务中检测精度较高,而且适应性和泛化性较强,满足自动焊接的要求.
Weld recognition based on key point detection method
In order to ensure the quality of automatic weld-ing and improve the accuracy and adaptability of weld identi-fication,a key point detection method for weld feature extrac-tion is proposed.A weld feature extraction network was de-signed based on the convolutional neural network.The net-work extracted weld feature by convolution and pool opera-tion.The feature map from deep layer is sampled up,and then the feature map from deep layer and shallow layer are fused to improve the accuracy of weld feature extraction.The feature point position of weld seam is predicted by the thermal image of weld seam,and the recognition and location of many kinds of groove weld seam are realized,and eliminating the need for non-maximum suppression algorithm,which improves the fea-ture extraction speed.The network model is trained by collect-ing different weld feature images.The experimental results show that the root mean square error of weld feature point loca-tion is 0.187 mm.The network model designed in this re-search has high detection accuracy in the weld feature point re-cognition task,and has strong adaptability and generalization,and meets the requirements of automatic welding.

image processingdeep-learningweld recog-nitionfeature fusion

郭忠峰、刘俊池、杨钧麟

展开 >

沈阳工业大学,沈阳, 110870

图像处理 深度学习 焊缝识别 特征融合

2024

焊接学报
中国机械工程学会 中国机械工程学会焊接学会 机械科学研究院哈尔滨焊接研究所

焊接学报

CSTPCD北大核心
影响因子:0.815
ISSN:0253-360X
年,卷(期):2024.45(1)
  • 10