首页|基于相关性分析和SSA-BP神经网络的铝合金电阻点焊质量预测

基于相关性分析和SSA-BP神经网络的铝合金电阻点焊质量预测

扫码查看
基于电阻点焊过程中工艺信号特征,在不同间距、不同间隙和不同间距与间隙 3种条件下,引入相关性分析方法分析工艺信号与熔核直径之间的相关性,并建立基于麻雀搜索算法-BP神经网络(sparrow search algorithm-back propagation neural network,SSA-BP)的电阻点焊质量预测模型,将功率、焊接电流、焊接电压和动态电阻作为预测模型输入特征.结果表明,经麻雀搜索算法优化后的BP神经网络在测试集上的决定系数R2、均方误差(mean-square error,MSE)、均方根误差(root mean square error,RMSE)和平均绝对误差(mean absolute error,MAE)分别为0.95,1.55,1.24和 0.90,均优于BP模型.获得了功率、焊接电流、焊接电压和动态电阻与熔核直径的映射关系,可为焊接的工艺参数设计提供依据.
Quality prediction of aluminum alloy resistance spot weld-ing based on correlation analysis and SSA-BP neural net-work
Based on the characteristics of the process signals in the resistance spot welding process,three working condi-tions of different spacing,different gaps and different spacing and gaps are analyzed,and correlation analysis is introduced to extract the correlation between the process signals and the dia-meter of nugget.A resistance spot welding quality prediction model based on Sparrow Search Algorithm-Back Propagation Neural Network(SSA-BP)was established,and power,weld-ing current,welding voltage and dynamic resistance are used as input features of the prediction model.The results show that the BP neural network optimized by the sparrow search al-gorithm outperforms the BP model on the test set with R2,MSE,RMSE and MAE of 0.95,1.55,1.24 and 0.90,respect-ively.It is also determined that there exists a mapping relation-ship between power,welding current,welding voltage and dy-namic resistance and the diameter of the nugget,which provides a basis for the design of process parameters for weld-ing.

resistance spot weldingnugget diametersparrow search algorithmBP neural networkcorrelation analysis

董建伟、胡建明、罗震

展开 >

天津大学,材料科学与工程学院,天津, 300350

电阻点焊 熔核直径 麻雀搜索算法 BP神经网络 相关性分析

国家自然科学基金资助项目

52075378

2024

焊接学报
中国机械工程学会 中国机械工程学会焊接学会 机械科学研究院哈尔滨焊接研究所

焊接学报

CSTPCD北大核心
影响因子:0.815
ISSN:0253-360X
年,卷(期):2024.45(2)
  • 16