首页|基于光谱物理特征感知网络的DED稀释率监测

基于光谱物理特征感知网络的DED稀释率监测

扫码查看
稀释率对激光能量沉积基体和熔覆层之间的冶金结合强度和成形精度至关重要.论文搭建了一套基于y-双通道光纤的DED过程稀释率实时监测系统.基于所采集等离子体光谱信号,提取基板和粉末关键代表元素谱线比表征稀释率变化.搭建光谱物理特征感知网络(Pi-LGNet),以光谱预处理信号和所提元素谱线等光谱物理特征作为双通道输入,实现了DED过程中稀释率的分类识别.结果表明,所提关键代表元素谱线比与稀释率具有强相关关系,所提Pi-LGNet网络模型准确率可达91.8%,消融试验和对比试验验证了该网络对光谱信号识别的优越性.
Dilution rate monitoring of DED based on a spectral physical feature perception network
The dilution rate is crucial for the metallurgical bonding strength and forming precision between the substrate and the cladding layer in laser energy deposition.However,existing monitoring methods find it challenging to perform online quality monitoring.Therefore,a real-time dilution rate monitoring system based on a Y-dual-channel fiber in the DED process was developed.This system collects plasma spectral signals and extracts the key representative elemental line ratios of the substrate and powder to characterize the dilution rate variation.The Pi-LGNet,a spectral physical feature perception network,was established,using preprocessed spectral signals and extracted elemental line ratios as dual-channel inputs,achieving classification and identification of the dilution rate during the DED process.The results show that the extracted key representative elemental line ratios have a strong correlation with the dilution rate,and the proposed Pi-LGNet network model achieves an accuracy of 91.8%.Ablation and comparative experiments confirm the superiority of this network in spectral signal recognition.

plasma spectroscopydirect energy depositionphysical feature perceptiondeep learningonline monitoring

白子键、张志芬、王杰、张帅、苏宇、温广瑞、陈雪峰

展开 >

西安交通大学,航空动力系统与等离子体技术全国重点实验室,西安,710049

西安交通大学,机械工程学院,西安,710049

等离子体光谱 激光能量沉积 物理特征感知 深度学习 在线监测

2024

焊接学报
中国机械工程学会 中国机械工程学会焊接学会 机械科学研究院哈尔滨焊接研究所

焊接学报

CSTPCD北大核心
影响因子:0.815
ISSN:0253-360X
年,卷(期):2024.45(11)