首页|基于深度强化学习的尾旋改出技术

基于深度强化学习的尾旋改出技术

扫码查看
本文搭建了飞机仿真环境,基于近端策略优化(PPO)算法建立了尾旋改出算法测试模型,设计了基准版单阶段、基准版双阶段、加深版单阶段、加深版双阶段四种网络结构,用于探究网络结构和改出阶段对尾旋改出效果的影响,设置了鲁棒性测试试验,从时延、误差和高度等方面进行了算法测试和结果分析.
Aircraft Spin Recovery Technique Based on Deep Reinforcement Learning
This paper builds an aircraft simulation environment,and establishes a test model of an automated spin recovery algorithm based on proximal policy optimization(PPO)algorithm.Four kinds of network structures are de-signed,that are basis single stage,basis double stage,deep single stage and deep double stage,to explore the influ-ence of network structure and recovery stage on spin recovery effect.A robustness test experiment is set up,and the al-gorithm is tested and the results are analyzed from the aspects of delay,error and height.

spin recoverydeep learningreinforcement learningproximal policy optimizationalgorithm testaircraft

谭健美、王君秋

展开 >

中国航空研究院,北京 100029

尾旋改出 深度学习 强化学习 近端策略优化 算法测试 飞机

2024

航空兵器
中国空空导弹研究院

航空兵器

CSTPCD北大核心
影响因子:0.453
ISSN:1673-5048
年,卷(期):2024.31(1)
  • 22