首页|智能空战深度强化决策方法现状与展望

智能空战深度强化决策方法现状与展望

扫码查看
本文聚焦于现代智能空战决策技术的发展需求,分析了智能空战场景的要素与特点,介绍了现有智能空战决策理论的研究现状,包括基于博弈理论的决策方法、先验数据驱动的决策方法、基于自主学习的决策方法,着重梳理了基于价值和基于策略的深度强化学习智能决策方法.最后,面向未来智能空战面临的各种挑战以及传统深度强化学习的局限性,展望了深度强化学习技术在空战领域的发展方向:面向集群作战的多体智能决策技术、面向广域时空的高效智能决策技术、面向复杂场景的泛化智能决策技术.
Status and Prospect on Deep Reinforcement Learning Decision-Making Methods for Intelligent Air Combat
This paper focuses on the development of modern intelligent air combat decision-making technology,and analyzes the elements and characteristics of intelligent air combat scenarios.It introduces the research status and practical application of existing intelligent air combat decision-making methods,including decision-making methods based on game theory,prior data-driven decision-making method,and decision-making methods based on autonomous learning,and especially focuses on deep reinforcement learning intelligent decision-making methods based on value and strategy.Finally,facing to various challenges of future intelligent air combat and the limitations of traditional deep rein-forcement learning,the paper gives the future development direction of deep reinforcement learning technology in the field of air combat,which are multi-agent intelligent decision-making technology for cluster warfare,efficient intelligent decision-making technology for wide area space-time,and generalized intelligent decision-making technology for complex scenarios.

air combat decision-makingartificial intelligencereinforcement learningintelligent gamecluster warfaredeep learning

张烨、涂远刚、张良、崔颢、王靖宇

展开 >

西北工业大学航天学院,西安 710072

中国空空导弹研究院,河南洛阳 471009

空战决策 人工智能 强化学习 智能博弈 集群作战 深度学习

国家自然科学基金青年项目中央高校基本科研业务费

52202502D5000210857

2024

航空兵器
中国空空导弹研究院

航空兵器

CSTPCD北大核心
影响因子:0.453
ISSN:1673-5048
年,卷(期):2024.31(3)
  • 15