首页|基于场景上下文感知的光学遥感图像分类方法

基于场景上下文感知的光学遥感图像分类方法

扫码查看
光学遥感图像分类是对地观测领域的关键技术之一.近年来,研究人员提出利用深度神经网络对光学遥感图像进行分类,针对部分网络模型存在特征提取不充分的问题,本文提出了一种基于场景上下文感知和注意力增强的ScEfficientNet遥感图像分类方法.该方法设计了场景上下文信息感知模块(SCDM)建模目标及其周围邻域的空间关系,利用场景上下文特征增强原始特征表示,引入卷积块注意力模块(CBAM),根据通道和空间的重要性对特征图进行加权,并结合深度可分离卷积结构提取目标判别性信息,提出了 ScMBConv卷积结构.在上述工作的基础上,利用基于场景上下文感知与注意力增强的ScEfficientNet网络模型进行遥感图像分类识别.实验结果表明,ScEfficientNet在AID数据集上实现了 96.8%的分类准确率,较EfficientNet提升了 3.3%,参数量为5.55 M,整体性能优于VGGNet19、GoogLeNet和ViT-B等图像分类算法,验证了 ScEfficientNet网络模型的有效性.
Optical Remote Sensing Image Classification Method Based on Scene Context Perception
Optical remote sensing image classification is one of the key technologies in the field of Earth observa-tion.In recent years,researchers have proposed optical remote sensing image classification using deep neural net-works.Aiming at the problem of inadequate feature extraction in some network models,this paper proposes a remote sensing image classification method based on scene context perception and attention enhancement,called ScEfficient-Net.This method designs a scene context-driven module(SCDM)to model the spatial relationship between the target and its surrounding neighborhood,enhancing the original feature representation with scene context features.It intro-duces a convolutional block attention module(CBAM)to weight the feature maps based on the importance of channels and spatial locations,and combines it with a depth-wise separable convolution structure to extract discriminative infor-mation of the targets,referred to as ScMBConv.Based on the above works,the ScEfficientNet model,which incorpo-rates scene context perception and attention enhancement,is used for remote sensing image classification.Experimental results show that ScEfficientNet achieves an accuracy of 96.8%in AID dataset,which is a 3.3%improvement over the original network,with a parameter count of 5.55 M.The overall performance is superior to other image classification algorithms such as VGGNet19,GoogLeNet and ViT-B,confirming the effectiveness of the ScEfficientNet model.

image classificationoptical remote sensing imageconvolutional neural networkEfficientNet

郭欣怡、张科、郭正玉、苏雨

展开 >

西北工业大学,西安 710072

中国空空导弹研究院,河南洛阳 471009

图像分类 光学遥感图像 卷积神经网络 EfficientNet

国家自然科学基金项目航空科学基金项目

6210620020220001053002

2024

航空兵器
中国空空导弹研究院

航空兵器

CSTPCD北大核心
影响因子:0.453
ISSN:1673-5048
年,卷(期):2024.31(3)
  • 3