首页|基于AFCKF的捷联旋转弹视线角速率滤波算法

基于AFCKF的捷联旋转弹视线角速率滤波算法

扫码查看
针对捷联旋转弹输出的视线角速率与姿态误差强耦合的问题,提出一种基于自适应渐消容积卡尔曼滤波(AFCKF)的方法.为实现弹目视线角速率的解耦,考虑弹目相对运动特性,构建包含末制导段视线角速率估计模型的状态模型,并根据几何关系建立了包含弹目视线角和姿态角的量测模型.为解决旋转弹下传统CKF视线角速率估计结果的发散导致滤波失效,引入基于残差序列的渐消因子对预测状态协方差进行调节以快速收敛估计结果.为验证AFCKF的有效性,考虑姿态角和量测角的典型干扰.仿真结果表明,所提方法的视线高低角速率估计误差均值、方位角速率估计误差均值分别为传统EKF的30.41%和42.18%,有效提升了旋转弹视线角速率估计的精度.
An Adaptive Fading CKF-Based Strapdown Rotating Projectile Line-of-Sight Rate Filtering Algorithm
In response to the strong coupling between line-of-sight angular rate and attitude error in the output of the strapdown rotating projectile,a method based on adaptive fading volume covariance Kalman filtering(AFCKF)is proposed.To achieve the decoupling of line-of-sight angular rate,the relative motion characteristics of missile and tar-get are considered.A state model is constructed,which includes an estimation model of line-of-sight angular rate in the terminal guidance phase,and a measurement model including line-of-sight angle and attitude angular is established based on geometric relationships.To solve the problem of filter failure caused by the divergence of the line-of-sight an-gular rate estimation results in traditional CKF for rotating projectile,a fading factor based on residual sequence is in-troduced to adjust the predicted state covariance for quick convergence of the estimation results.To verify the effective-ness of AFCKF,typical interferences of attitude angle and measurement angle are considered.Simulation results show that the mean estimation errors of line-of-sight elevation rate and azimuth rate of the proposed method are 30.41%and 42.18%of the traditional EKF,respectively,effectively improving the accuracy of line-of-sight angular rate estimation for rotating projectil.

rotating projectilesstrapdown seekerline-of-sight rateAFCKFnonlinear filtering

夏书涵、范军芳、纪毅、王伟、陈仕伟、马乾才

展开 >

北京信息科技大学自动化学院,北京 100192

北京理工大学宇航学院,北京 100081

西安现代控制技术研究所,西安 710065

旋转弹 捷联导引头 视线角速率 AFCKF 非线性滤波

2024

航空兵器
中国空空导弹研究院

航空兵器

CSTPCD北大核心
影响因子:0.453
ISSN:1673-5048
年,卷(期):2024.31(4)