首页|双层协同结构改进的高光谱异常检测算法

双层协同结构改进的高光谱异常检测算法

扫码查看
在高光谱目标检测领域,基于协同表示的算法展现出优异的性能,但其一直存在异常点对背景字典的污染问题,这一定程度上影响了算法的检测性能.本文提出了一种改进的协同表示高光谱异常检测算法,设计了双层协同表示结构,首先利用第一层协同表示算法将大部分异常点检出,并用其邻域进行背景纯化,剔除已检出的异常点对背景字典的污染,然后用纯化的背景字典来预测背景,进而在第二层采用协同表示进行异常检测.仿真试验表明,通过简单的双层协同表示结构可以有效地减轻异常点对背景污染的问题.该算法的检测性能相对基础的协同表示算法有显著的提升,与现有的算法对比,具有相对较好的检测效果.
Improved Hyperspectral Anomaly Detection Algorithm with Double Layer Collaborative Structure
In the field of hyperspectral target detection,algorithms based on collaborative representation have shown excellent performance.However,the pollution of background dictionaries by anomaly has always been a prob-lem,which affects the detection performance of this algorithm partly.This paper proposes an improved collaborative representation algorithm for hyperspectral anomaly detection,and designs a double-layer collaborative representation structure.Firstly,the first layer collaborative representation algorithm is used to detect most of the anomaly.Its neigh-borhood pixels are used for background purification to eliminate the pollution of the detected anomaly on the background dictionary.Then,the purified background dictionary is used to predict the background,and in the second layer,the collaborative representation is used for anomaly detection.Simulation experiments show that a simple double layer col-laborative representation structure can effectively alleviate the background pollution caused by anomaly.The detection performance of this algorithm is significantly improved compared to the basic collaborative representation algorithm,and it also has relatively good detection performance.

hyperspectralanomaly detectiontarget detectionbackground pollutioncollaborative representa-tiondouble layer structure

李欢、赵嘉豪、刘广涵、石锦辉、宋江鲁奇、周慧鑫

展开 >

西安电子科技大学物理学院,西安 710071

西安邮电大学,西安 710071

中国空空导弹研究院,河南洛阳 471009

高光谱 异常检测 目标检测 背景污染 协同表示 双层结构

2024

航空兵器
中国空空导弹研究院

航空兵器

CSTPCD北大核心
影响因子:0.453
ISSN:1673-5048
年,卷(期):2024.31(4)