首页|基于传感器关联网络的燃气轮机异常检测方法

基于传感器关联网络的燃气轮机异常检测方法

扫码查看
通过分析燃气轮机4种典型异常形式的产生机理以及特征表现,得到了不同异常形式与传感器关联网络结构特征之间的映射关系。在此基础上,得到传感器关联网络的异常特征模式,提出了基于传感器关联网络的燃气轮机异常检测策略。通过实例分析,证明了融合多源信息基础上建立的传感器关联网络模型,可以过滤掉节点间关联指标低于阈值0。37的相关性,有效的实现燃气轮机的稳态异常检测,并可以检测出转速上升过程中,节点间相关性的正常线性变化趋势,存在大于12%的异常凹陷非线性趋势,从而有效的实现燃气轮机的动态异常检测。
Anomaly detection method based on gas turbine sensor associated network
The mechanism and characteristics of four typical abnormal forms of gas turbine were analyzed,and the mapping between the different abnormal features and the sensor network characteristics were acquired.On this basis,the abnormal characteristics of sensor network were obtained,and the detection strategy of gas turbine anomaly based on sensor correlation network was proposed.The results of experiments indicated that sensor related network model based on multi source information fusion could filter out the correlation between nodes when the correlation indicator was below the threshold of 0.37,and achieve steady-state anomaly detection of gas turbine effectively,showing that there was a non-linear trend of abnormal depression greater than 12 % during the speed up;although the correlation between nodes under normal circumstances should be a linear trend,this method could achieve dynamic anomaly detection of gas turbine effectively.

fault diagnosissteady-state anomaly detectiongas turbinedynamic anomaly detectionsensor association network

尹莉莉、陈德运、顾恒文、王伟影

展开 >

哈尔滨理工大学软件学院,哈尔滨150040

哈尔滨理工大学计算机学院,哈尔滨150080

中国船舶重工集团公司第七○三研究所燃气轮机事业部,哈尔滨150001

故障诊断 稳态异常检测 燃气轮机 动态异常检测 传感器关联网络

黑龙江省自然科学基金面上资助项目

F201626

2018

航空动力学报
中国航空学会

航空动力学报

CSTPCDCSCD北大核心EI
影响因子:0.59
ISSN:1000-8055
年,卷(期):2018.33(1)
  • 1
  • 17