多模型自校准Kalman滤波方法
Multiple-model self-calibration Kalman filter method
杨海峰 1王金娜 2王宇翔3
作者信息
- 1. 工业和信息化部 高新技术司,北京 100804
- 2. 西安交通大学 能源与动力工程学院,西安 710049
- 3. 华中科技大学 机械科学与工程学院,武汉 430074
- 折叠
摘要
基于自校准Kalman滤波方法和多模型估计理论,针对工程实际中未知输入(如突风、故障和未知系统误差等)对系统状态方程的影响问题,提出了一种多模型自校准Kalman滤波方法.该方法同时采用自校准Kalman滤波和标准Kalman滤波进行运算,并根据贝叶斯定理自动分配两种方法滤波值的权重,通过加权融合得到最终的滤波结果.与自校准Kalman滤波方法相比,多模型自校准Kalman滤波方法既能有效地补偿非零未知输入的影响,又明显改善了系统在未知输入为零时的滤波精度,大量数值仿真结果表明该方法精度提升可达10%以上,具有更强的适应性和鲁棒性.
Abstract
Based on the self-calibration Kalman filter(SKF)and the multiple-model estimation(MME),considering the influence of unknown inputs(such as gusts,faults,unknown system errors,etc.)on the system state equation in Engineering,the multiple-model self-calibration Kalman filter(MSKF)was proposed.According to the Bayes'theorem,this filtering method used the SKF and the standard Kalman filter(KF)whose weights were assigned automatically to obtain the final filtering result through weight-average way.Compared with the SKF,the MSKF can not only effectively compensate the effects of non-zero unknown inputs,but also improve the estimation accuracy when unknown inputs were zero.A large number of simulation results showed that accuracy can be improved by more than 10%,using the proposed method.In summary,the MSKF has stronger adaptability and robustness.
关键词
自校准滤波/多模型估计/Kalman滤波/未知输入/故障诊断Key words
self-calibration filter/multiple-model estimation/Kalman filter/unknown input/fault diagnosis引用本文复制引用
基金项目
国家自然科学基金面上项目(61972021)
出版年
2024