首页|多模型自校准扩展Kalman滤波方法

多模型自校准扩展Kalman滤波方法

扫码查看
基于扩展Kalman滤波方法(EKF)、自校准扩展Kalman滤波方法(SEKF)和多模型估计理论(MME),针对工程实际中非线性系统状态方程受未知输入(如突风、故障和未知系统误差等)影响的问题,提出了一种多模型自校准扩展Kalman滤波方法(MSEKF),将多模型自校准Kalman滤波方法(MSKF)的适用范围扩展到了非线性领域.该方法同时采用EKF与SEKF进行计算,根据贝叶斯定理实时分配两者先验估计值的权重,通过加权融合进而得到最终的状态估计.本文方法不仅解决了非线性系统状态方程受未知输入影响时EKF滤波发散的问题,而且在未知输入为零时的滤波精度与SEKF相比也更高,大量数值仿真结果表明该方法精度提升可达4%,具有更强的适应性和鲁棒性.
Multiple-model self-calibration extended Kalman filter method
Based on the extended Kalman filter(EKF),the self-calibration extended Kalman filter(SEKF)and the multiple-model estimation(MME),and considering the influence of unknown inputs(such as gusts,faults,unknown system errors,etc.)on the nonlinear system state equation in Engineering,the multiple-model self-calibration extended Kalman filter(MSEKF)was proposed to expand the application scope of the multiple-model self-calibration Kalman filter(MSKF).According to the Bayes'theorem,this filtering method used the EKF and the SEKF whose weights were assigned automatically to obtain the final filtering result through weight-average way.The MSEKF can not only effectively compensate the effects of non-zero unknown inputs on the nonlinear system,but also improve the estimation accuracy compared with the SEKF when these effects were zero.A large number of simulation results using the proposed method showed that the accuracy can be improved by more than 4%,showing stronger adaptability and robustness.

self-calibration filtermultiple-model estimationextended Kalman filterunknown inputfault diagnosis

杨海峰、王金娜、王宇翔

展开 >

工业和信息化部高新技术司,北京 100804

西安交通大学能源与动力工程学院,西安 710049

华中科技大学机械科学与工程学院,武汉 430074

自校准滤波 多模型估计 扩展Kalman滤波 未知输入 故障诊断

国家自然科学基金面上项目

61972021

2024

航空动力学报
中国航空学会

航空动力学报

CSTPCD北大核心
影响因子:0.59
ISSN:1000-8055
年,卷(期):2024.39(4)
  • 22