首页|基于改进YOLOv8的航空铝合金焊缝缺陷检测方法

基于改进YOLOv8的航空铝合金焊缝缺陷检测方法

扫码查看
为了提高航空铝合金焊接缺陷数字射线成像自动检测效率和准确度,提出了一种改进YOLOv8智能检测方法.针对样本数据不足和缺陷不清晰的问题,采用Retinex图像增强算法和引导滤波算法对原始图像进行图像增强处理,然后采用旋转和翻转等方式扩充数据集.在模型改进中,使用GhostBottle-neck模块替换C2f中的Bottleneck模块,完成模型的轻量化,减少了额外的冗余参数并降低了计算量.同时,引入空间注意力机制,获得缺陷更多的空间信息,并调整预测框的回归范围,提升了模型的精度.通过铝合金焊接件中常见几类缺陷进行测试和验证,改进YOLOv8算法平均精度均值(mAP50)达到92.9%,优于传统的Faster-RCNN、SSD和YOLOv8算法,能够有效适用于焊缝缺陷的自动识别.
Weld defect detection of aviation aluminum alloy based on improved YOLOv8
In order to improve the efficiency and accuracy of automatic detection,an improved YOLOv8 detection method was proposed.Retinex image enhancement algorithm combing guided filtering was used to improve the contrast of digital radiograph images.Then,the digital radiography images was rotated and flipped to extend the data-set.In the process of model improvement,the Bottleneck module in C2f was replaced by GhostBottleneck module to reduce additional redundant parameters,so the lightweight model was acquired.In addition,spatial attention mechanism was introduced to obtain more spatial information of the defect.The regression range of the prediction box was adjusted to improve the detection accuracy of the proposed model.Several common aluminum alloy weld defects were used for experimental testing and verification.It was verified that the mAP of the improved YOLOv8 was 92.9%,which was better than Faster-RCNN,SSD and YOLOv8.The proposed model can be used for detecting the weld defect.

digital radiographyimage enhancementautomatic identificationYOLOv8 algorithmweld defect

苏志威、黄子涵、邱发生、郭朝阳、殷晓芳、邬冠华

展开 >

南昌航空大学无损检测技术教育部重点实验室,南昌 330063

江西洪都航空工业集团有限责任公司检验检测中心,南昌 330024

数字射线 图像增强 自动识别 YOLOv8算法 焊缝缺陷

国家自然科学基金江西省自然科学基金青年基金赣鄱俊才主要学科学术和技术带头人青年项目南昌航空大学博士引进人才项目

6220124120224BAB21405720232BCJ23092EA201908298

2024

航空动力学报
中国航空学会

航空动力学报

CSTPCD北大核心
影响因子:0.59
ISSN:1000-8055
年,卷(期):2024.39(6)
  • 2
  • 15