基于EMD-LSTM模型的APU排气温度预测
APU exhaust temperature prediction based on EMD-LSTM model
王晓燕 1白贤明 2宋辞 1毛子荐1
作者信息
- 1. 沈阳航空航天大学经济与管理学院,沈阳 110136;辽宁省飞机火爆防控及可靠性适航技术重点实验室,沈阳 110136
- 2. 辽宁省飞机火爆防控及可靠性适航技术重点实验室,沈阳 110136;沈阳航空航天大学安全工程学院,沈阳 110136
- 折叠
摘要
为了提高排气温度(EGT)的预测精度需要减少数据的复杂性.提出一种经验模态分解(EMD)和长短期记忆神经网络(LSTM)组合方法来预测EGT.将具有时间序列特征的EGT数据,利用EMD分解成含有相同特征的本征模态函数(IMF)和残差(RES);利用LSTM模型对分量进行预测;将所有分量预测出来的结果进行叠加得到EGT的预测值.并对EMD-LSTM模型与单一的LSTM模型的预测结果进行对比分析.结果表明:前者比后者的方均根误差和平均相对误差分别降低了 35%和42%.说明此模型在预测APU的EGT值上具有更好的预测精度.
Abstract
To improve the prediction accuracy of exhaust gas temperature(EGT),the complexity of the data should be reduced.A combined empirical modal decomposition(EMD)and long short-term memory neural network(LSTM)method was proposed to predict EGT.First,EGT data with time series characteristics were decomposed into intrinsic mode function(IMF)and residual(RES)containing the same characteristics using EMD;the components were predicted using LSTM model;and the results predicted from all components were superimposed to obtain the predicted values of EGT.The prediction results of EMD-LSTM model and single LSTM model were compared and analyzed.The results showed that the former had 35%and 42%lower root mean square error and average relative error than the latter.It indicated that this model has better prediction accuracy in predicting the EGT value of APU.
关键词
排气温度/预测精度/经验模态分解/长短期记忆神经网络/本征模态函数Key words
exhaust temperature/prediction accuracy/empirical modal decomposition/long and short-term memory neural network/intrinsic mode function引用本文复制引用
出版年
2024