首页|多模型自校准无迹Kalman滤波方法

多模型自校准无迹Kalman滤波方法

扫码查看
基于无迹Kalman滤波方法(UKF)、自校准无迹Kalman滤波方法(SUKF)和多模型估计理论(MME),针对工程实际中强非线性系统状态方程受未知输入(如医用机械臂惯导单元的零漂误差、列车行驶中遭遇突风和机载元器件故障等)影响的问题,提出了一种多模型自校准无迹Kalman滤波方法(MSUKF),将多模型自校准Kalman滤波方法(MSKF)的适用范围扩展到了强非线性领域.该方法同时采用UKF与SUKF进行计算,根据贝叶斯定理实时分配两者先验估计值的权重,通过加权融合进而得到最终的状态估计.大量数值仿真结果表明:本文方法精度比滤波发散的UKF提高了 50%,与无偏的SUKF相比也提升了 4%以上,具有更强的适应性和鲁棒性.
Multiple-model self-calibration unscented Kalman filter method
Based on the unscented Kalman filter(UKF),the self-calibration unscented Kalman filter(SUKF)and the multiple-model estimation(MME),considering the influences of unknown inputs(such as drift error of the IMU in medical manipulator,gust encountered by the running train and failure of onboard components)on the strongly nonlinear system state equation in engineering,the multiple-model self-calibration unscented Kalman filter(MSUKF)was proposed to expand the application scope of the multiple-model self-calibration Kalman filter(MSKF).According to the Bayes'theorem,this filtering method used the UKF and the SUKF whose weights were assigned automatically to obtain the final filtering result through weight-average way.A large number of simulation results showed that the accuracy of MSUKF was 50%higher than that of divergent UKF,and 4%higher than that of unbiased SUKF,presenting stronger adaptability and robustness.

self-calibration filtermultiple-model estimationunscented Kalman filterunknown inputfault diagnosis

杨海峰、王宇翔

展开 >

工业和信息化部高新技术司,北京 100804

华中科技大学机械科学与工程学院,武汉 430074

自校准滤波 多模型估计 无迹Kalman滤波 未知输入 故障诊断

国家自然科学基金面上项目

61972021

2024

航空动力学报
中国航空学会

航空动力学报

CSTPCD北大核心
影响因子:0.59
ISSN:1000-8055
年,卷(期):2024.39(8)