首页|基于小波分析和卷积神经网络的滚动轴承早期故障告警方法

基于小波分析和卷积神经网络的滚动轴承早期故障告警方法

扫码查看
针对航空发动机主轴承状态监测中存在的真实故障样本难以获取、变工况通用告警阈值难以界定以及早期微弱故障难以识别问题,提出一种滚动轴承早期故障通用告警方法。该方法仅基于正常样本训练卷积神经网络,依靠退化数据与正常数据间的特征距离来构造演化状态指示器,并基于训练标签实现不同工况数据告警阈值的统一,同时利用小波频带包络信号对早期高频故障的敏感性实现提前预警;然后,基于拉依达准则划分演化阶段,确定退化与失效阈值;最后基于粒子滤波对剩余寿命进行了逐步跟踪预测。3组试验结果证明,基于不同故障试验数据的小波分析和卷积神经网络(Wavelet-CNN)特征,其退化阈值与失效阈值能被归一化在0。6和1。0附近,且对退化开始时间的预测较非小波方法分别提前13。01%、12。33%及13。70%。
Early fault alarm method of rolling bearing based on wavelet analysis and convolution neural network
In view of the problems in condition monitoring of aero-engine main bearing,such as the difficulty in obtaining the real fault samples,the limitation in defining the general alarm threshold under variable conditions and the difficulty to identify the early weak faults,a general alarm method for early faults of rolling bearings was proposed.This method only trained convolutional neural networks based on normal samples,constructed evolution state indicator by the characteristic distance between degraded data and normal data,and unified the alarm thresholds of different working conditions based on training labels;at the same time,the sensitivity of wavelet band envelope signal to early high-frequency fault was used to realize early warning;then,the evolution stages were divided based on the Pauta criterion,according to which the degradation and failure thresholds were determined;finally,the remaining useful life was predicted step by step based on particle filter.Three groups of test results showed that the degradation threshold and failure threshold of wavelet analysis and convolution neural network(Wavelet-CNN)based on different fault test data can be normalized around 0.6 and 1.0,and the predictions of degradation start time were 13.01%,12.33%and 13.70%earlier than those of non wavelet methods respectively.

rolling bearinggeneral diagnosisearly warningdeep learningwavelet analysis

刘西洋、陈果、尉询楷、刘曜宾、王浩、贺志远

展开 >

南京航空航天大学民航学院,南京 211106

南京航空航天大学通用航空与飞行学院,江苏溧阳 213300

北京航空工程技术研究中心,北京 100076

滚动轴承 通用诊断 早期预警 深度学习 小波分析

国家科技重大专项国家自然科学基金江苏省研究生科研与实践创新计划项目

J2019-Ⅳ-004-007152272436KYCX20_0211

2024

航空动力学报
中国航空学会

航空动力学报

CSTPCD北大核心
影响因子:0.59
ISSN:1000-8055
年,卷(期):2024.39(9)
  • 5